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Example 1: exiting a spiral

Air speed, plane orientation and angular
velocities, pressure measurements,
commands’ positions . . .

Thrust, rudder, yoke.

Vital maneuver.
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Example 2: dynamic treatement regimes for HIV patients

Anti-bodies concentration . . .

Choice of drugs (or absence of
treatment).

Long-term, chronic diseases (HIV,
depression, . . . ).
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Example 3: inverted pendulum

x , ẋ , θ , θ̇ .

Push left or right (or don’t push).

Toy problem representative of
many examples (Segway PT,
juggling, plane control).
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Example 4: queuing systems

Line length, number of open
counters, . . .

Open or close counters.

Try to get all passengers on the
plane in time (at minimal cost)!
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Example 5: portfolio management

Economic indicators, prices, . . .

Dispatch investment over financial
assets.

Maximize long term revenue.
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Example 6: hydroelectric production

Water level, electricity demand,
weather forecast, other sources of
energy . . .

Evaluate “water value” and decide
to use it or not.
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Intuition

What do all these systems have in common?

Prediction or decision over the future.

Complex / high-dimension / non-linear / non-deterministic environments.

What matters is not a single decision but the sequence of decisions.

One can quantify the value of a sequence of decisions.
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Sequential agent-environment interaction
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Sequential agent-environment interaction
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Questions

A general theory of sequential decision making?

What hypothesis on the “environment”?

What is a “good” behaviour?

Is the knowledge of a model always necessary?

Balancing information acquisition and knowledge exploitation?
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1 A practical introduction
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The ingredients

Set T of time steps T .

Set S of possible states s for the system.

Set A of possible actions a of the agent.

Transition dynamics of the system s′← f (?).

Rewards (reinforcement signal) at each time step r(?).

t

s

t+ 1

s′ = f(?)

r(?)reward:

state:

time:
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Markov Decision Processes

Sequential decision under probabilistic action uncertainty:

Markov Decision Process (MDP)

5-tuple 〈S,A,p, r ,T 〉
Markov transition model p(s′|s,a)
Reward model r(s,a)
Set T of decision epochs {0,1, . . . ,H}

Infinite (or unbounded) horizon: H→ ∞

t0 1 n n+ 1

s0

}
p(s1|s0, a0)
r(s0, a0)

}
p(s1|s0, a2)
r(s0, a2)

sn p(sn+1|sn, an)
r(sn, an)
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What is a behaviour?

Policy

A policy is a sequence of decision rules δt : π = {δt}t∈N,

with δt :

{
St+1×At → P ′(A)

h 7→ δt(a|h)

δt(a|h) indicates
the distribution over action a

to undertake at time t , given
the history of states/actions h.
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Evaluating a sequence of policy?

What can I expect on the long-term,
from this sequence of actions,

in my current state?

E.g.
s0 s1 s2 s3 . . . sn+1

r0 + γr1 +γ2r2+ +γnrn

Several criteria:

Average reward V (s) = E
(

lim
H→∞

1
H

H
∑

δ=0
rδ

∣∣∣∣s0 = s

)

Total reward V (s) = E
(

lim
H→∞

H
∑

δ=0
rδ

∣∣∣∣s0 = s

)

γ-discounted reward V (s) = E
(

lim
H→∞

H
∑

δ=0
γδ rδ

∣∣∣∣s0 = s

)

→ value of a state under a certain behaviour.

16 / 46



Introduction Modeling Optimizing Learning

Evaluating a policy

Value function of a policy under a γ-discounted criterion

V π :





S → R

s 7→ V π(s) = E
(

lim
H→∞

H
∑

δ=0
γδ rδ

∣∣∣∣s0 = s,π

)
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Optimal policies

Optimal policy
π∗ is said to be optimal iff π∗ ∈ argmax

π

V π .

A policy is optimal if it dominates over any other policy in every state:

π
∗ is optimal⇔∀s ∈ S, ∀π, V π∗(s)≥ V π(s)
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First fundamental result

Fortunately. . .

Optimal policy

For

{
γ-discounted criterion
infinite horizon

, there always exists at least one optimal

stationary, deterministic, Markovian policy.

Markovian :
∀(si ,ai) ∈ (S×A)t−1

∀(s′i ,a′i) ∈ (S×A)t−1 ,δt (a|s0,a0, . . . ,st) = δt (a|s′0,a′0, . . . ,st).

One writes δt(a|s).
Stationary : ∀(t, t ′) ∈ N2,δt = δ ′t .
One writes π = δ0.

Deterministic : δt(a|h) =
{

1 for a single a
0 otherwise

.
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Let’s play with actions

What’s the value of “a then π”?

Qπ(s,a) = E

(
∞

∑
t=0

γ
t r (st ,at)

∣∣∣∣s0 = s,a0 = a,π

)

= r (s,a)+E

(
∞

∑
t=1

γ
t r (st ,at)

∣∣∣∣s0 = s,a0 = a,π

)

= r (s,a)+ γ ∑
s′∈S

p
(
s′|s,a

)
E

(
∞

∑
t=1

γ
t−1r (st ,at)

∣∣∣∣s1 = s′,π

)

= r (s,a)+ γ ∑
s′∈S

p
(
s′|s,a

)
V π
(
s′
)

The best one-step lookahead action can be selected by maximizing Qπ .
To improve on a policy π , it is more useful to know Qπ than V π and pick
the greedy action.
Also V π(s) = Qπ(s,π(s)). Let’s replace that above (next slide).
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Computing a policy’s value function

Evaluation equation
V π is a solution to the linear system:

V π (s) = r (s,π (s))+ γ ∑
s′∈S

p
(
s′|s,π (s)

)
V π
(
s′
)

V π = rπ + γPπV π = T πV π

Similarly:

Qπ (s,a) = r (s,a)+ γ ∑
s′∈S

p
(
s′|s,a

)
Qπ
(
s′,π

(
s′
))

Qπ = r + γPQπ = T πQπ

Recall also that V π(s) = E

(
∞

∑
δ=0

γ
δ r(sδ ,π(sδ ))

∣∣∣∣s0 = s

)
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Computing a policy’s value function

Evaluation equation
V π is a solution to the linear system:

V π (s) = r (s,π (s))+ γ ∑
s′∈S

p
(
s′|s,π (s)

)
V π
(
s′
)

V π = rπ + γPπV π = T πV π

Similarly:

Qπ (s,a) = r (s,a)+ γ ∑
s′∈S

p
(
s′|s,a

)
Qπ
(
s′,π

(
s′
))

Qπ = r + γPQπ = T πQπ

Notes:

For continuous state and action spaces ∑→
∫

For stochastic policies: ∀s ∈ S, V π(s) = ∑
a∈A

π(s,a)

(
r(s,a)+ γ ∑

s′∈S
p(s′|s,a)V π(s′)

)
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Properties of T π

T πV π (s) = r (s,π (s))+ γ ∑
s′∈S

p
(
s′|s,π (s)

)
V π
(
s′
)

T πV π = rπ + γPπV π

Solving the evaluation equation

T π is linear.

⇒ Solving V π = T πV π and Qπ = T πQπ by matrix inversion?
With γ < 1, V π = (I− γPπ)−1 rπ and Qπ = (I− γP)−1 rπ

With γ < 1, T π is a ‖ · ‖∞-contraction mapping over the F (S,R) (resp.
F (S×A,R)) Banach space.

⇒ With γ < 1, V π (resp. Qπ ) is the unique solution to the (linear) fixed point
equation V = T πV (resp. Q = T πQ).
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Characterizing an optimal policy

Find π∗ such that π∗ ∈ argmax
π

V π(s).

Notation: V π∗ = V ∗, Qπ∗ = Q∗

Let’s play with our intuitions:

One has Q∗ (s,a) = r (s,a)+ γ ∑
s′∈S

p (s′|s,a)V ∗ (s′).

If π∗ is an optimal policy, then V ∗ (s) = Q∗ (s,π∗ (s)).

Optimal greedy policy

Any policy π defined by π(s) ∈ argmax
a∈A

Q∗(s,a) is an optimal policy.
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Bellman optimality equation

The key theorem:

Bellman optimality equation
The optimal value function obeys:

V ∗(s) = max
a∈A

{
r(s,a)+ γ ∑

s′∈S

p(s′|s,a)V ∗(s′)
}

= T ∗V ∗

or in terms of Q-functions:

Q∗(s,a) = r(s,a)+ γ ∑
s′∈S

p(s′|s,a)max
a′∈A

Q∗(s′,a′) = T ∗Q∗
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Properties of T ∗

V ∗(s) = max
π

V π(s)

V ∗(s) = max
a∈A

{
r(s,a)+ γ ∑

s′∈S

p(s′|s,a)V ∗(s)
}

= T ∗V ∗

Solving the optimality equation
T ∗ is non-linear.

T ∗ is a ‖ · ‖∞-contraction mapping over the F (S,R) (resp. F (S×A,R))
Banach space.

⇒ V ∗ (resp. Q∗) is the unique solution to the fixed point equation V = TV
(resp. Q = TQ).

25 / 46



Introduction Modeling Optimizing Learning

Let’s summarize

Formalizing the control problem:

Environment (discrete time, non-deterministic, non-linear)↔ MDP.

Behaviour↔ control policy π : s 7→ a.

Policy evaluation criterion↔ γ-discounted criterion.

Goal↔ Maximize value function V π(s), Qπ(s,a).

Evaluation eq. ↔ V π = T πV π , Qπ = T πQπ .

Bellman optimality eq. ↔ V ∗ = T ∗V ∗, Q∗ = T ∗Q∗.

Now what?

p and r are known→ Probab. Planning, Stochastic Optimal Control.

p and r are unknown→ Reinforcement Learning.
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How does one find π∗?

Three “standard” approaches:

Dynamic Programming in value function space
→Value Iteration

Dynamic Programming in policy space
→Policy Iteration

Linear Programming in value function space

We won’t see each algorithm in detail, nor explain all their variants. The goal of
this section is to illustrate three fundamentally different ways of computing an
optimal policy, based on Bellman’s optimality equation.
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Value Iteration

Key idea:

V ∗(s) = max
a∈A

{
r(s,a)+ γ ∑

s′∈S
p(s′|s,a)V ∗(s)

}
= T ∗V ∗

Value iteration
T ∗ is a contraction mapping,

Value function space is a Banach space.

⇒ The sequence Vn+1 = T ∗Vn converges to V ∗.

π∗ is the V ∗-greedy policy.
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Value Iteration

Init: V ′← V0.
repeat

V = V ′

for s ∈ S do

V ′(s)←max
a∈A

{
r(s,a)+ γ ∑

s′∈S
p(s′|s,a)V (s′)

}

until ‖V ′−V‖ ≤ ε

return greedy policy w.r.t. V ′
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Value Iteration

Init: Q′← Q0.
repeat

Q = Q′

for (s,a) ∈ S×A do
Q′(s,a)← r(s,a)+ γ ∑

s′∈S
p(s′|s,a)max

a′∈A
Q(s′,a′)

until ‖Q′−Q‖ ≤ ε

return greedy policy w.r.t. Q′

31 / 46



Introduction Modeling Optimizing Learning

Illustration - an investment dilemma

A gambler’s bet on a coin flip:

Tails⇒ looses his stake.

Heads⇒ wins as much as his stake.

Goal reach 100 pesos!

States S = {1, . . . ,99}.
Actions A = {1,2, . . . ,min(s,100− s)}

Rewards +1 when the gambler reaches 100 pesos.

Transitions Probability of heads-up = p.

Discount γ = 1

V π → probability of reaching the goal.
π∗ maximizes V π

32 / 46



Introduction Modeling Optimizing Learning

Illustration - an investment dilemma, p = 0.4

Matlab demo.
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Policy Iteration

Key idea:

π
∗ = argmax

π
V π

V π = r(s,π(s))+ γ ∑
s′∈S

p(s′|s,π(s))V π(s′) = T πV π

Policy iteration
A policy that is Qπ -greedy is not worse than π .
→ iteratively improve and evaluate the policy.

Instead of a path V0,V1, . . . among value functions, let’s search for a path
π0,π1, . . . among policies.
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Policy Iteration

Policy evaluation: V πn

One-step improvement: πn+1
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Policy Iteration

Init: π ′← π0.
repeat

π ← π ′

V π ← Solve V = T πV
for s ∈ S do

π ′(s)← argmax
a∈A

{
r(s,a)+ γ ∑

s′∈S
p(s′|s,a)V π(s′)

}

until π ′ = π

return π
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Policy Iteration

Init: π ′← π0.
repeat

π ← π ′

Qπ ← Solve Q = T πQ
for s ∈ S do

π ′(s)← argmax
a∈A

Qπ(s,a)

until π ′ = π

return π
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Illustration - an investment dilemma, p = 0.4

Matlab demo.
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Linear Programming

Key idea: formulate the optimality equation as a linear problem.
“V ∗ is the smallest value that dominates over all policy values”

∀s ∈ S,V (s) = max
a∈A

{
r(s,a)+ γ ∑

s′∈S

p(s′|s,a)V (s′)

}

⇔
{

min ∑
s∈S

V (s)

s.t. ∀π, V ≥ T πV

⇔




min ∑
s∈S

V (s)

s.t. ∀(s,a) ∈ S×A, V (s)− γ ∑
s′∈S

p(s′|s,a)V (s′)≥ r(s,a)
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In a nutshell

To solve Bellman’s optimality equation:

The sequence of Vn+1 = T ∗Vn converges to V ∗

→ Value Iteration.

The sequence of πn+1 ∈ argmax
a

Qπn converges to π∗

→ Policy Iteration.

V ∗ is the smallest function s.t. V (s)≥ r (s,a)+ γ ∑
s′∈S

p (s′|s,a)V (s)

→ Linear Programming resolution.
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Wait a minute. . .

. . . so far, we’ve characterized and searched for optimal policies, using the
supposed properties (p and r ) of the environment.

We’ve been using p and r each time! We’re cheating!

Where’s the learning you promised?

We’re coming to it. Let’s put it all in perspective.
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Let’s put it all in perspective: RL within ML

A taxonomy of Machine Learning

Supervised Learning

learning from a teacher
information: correct examples
generalize from examples
classifier, regressor
SVMs, neural networks, trees

Unsupervised Learning

learning from similarity
information: unlabeled examples
identify structure in the data
clusters, self-organized data
k-means, Kohonen maps, PCA

Reinforcement Learning

learning by interaction
information: trial and error
reinforce good choices
value function, control policy
TD-learning, Q-learning
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Let’s put it all in perspective: RL within ML

Different learning tasks
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Let’s put it all in perspective: RL within ML

What kind of input?
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generalize from examples
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k-means, Kohonen maps, PCA

Reinforcement Learning
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value function, control policy
TD-learning, Q-learning
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Let’s put it all in perspective: RL within ML

For what goal?

Supervised Learning
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information: correct examples
generalize from examples
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Let’s put it all in perspective: RL within ML

Examples of algorithms

Supervised Learning

learning from a teacher
information: correct examples
generalize from examples
classifier, regressor
SVMs, neural networks, trees

Unsupervised Learning

learning from similarity
information: unlabeled examples
identify structure in the data
clusters, self-organized data
k-means, Kohonen maps, PCA

Reinforcement Learning

learning by interaction
information: trial and error
reinforce good choices
value function, control policy
TD-learning, Q-learning
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Reinforcement Learning

Evaluate and improve a policy based on experience samples.
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Reinforcement Learning

experience samples?
→ (s,a, r ,s′)
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Reinforcement Learning

Two problems in RL:

Predict a policy’s value.

Control the system.
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A little vocabulary

Curse of dimensionality

Exploration/exploitation dilemma

Model-based vs model-free RL

Interactive vs. non-interactive algorithms

On-policy vs. off-policy algorithms

Number of states, actions or outcomes grows exponentially with number of
dimensions.
E.g. continuous control problem in S = [0;1]10, discretized with a step-size of 1/10→
1010 states!
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A little vocabulary

Curse of dimensionality

Exploration/exploitation dilemma

Model-based vs model-free RL

Interactive vs. non-interactive algorithms

On-policy vs. off-policy algorithms

Where are the good rewards?
Exploit whatever good policy has been found so far or explore unknown transitions
hoping for more?
How to balance exploration and exploitation?
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A little vocabulary

Curse of dimensionality

Exploration/exploitation dilemma

Model-based vs model-free RL

Interactive vs. non-interactive algorithms

On-policy vs. off-policy algorithms

Also called indirect vs. direct RL.
Indirect: {(s,a, r ,s′)} → (p, r) → V π or π∗

Direct: {(s,a, r ,s′)} → V π or π∗
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A little vocabulary

Curse of dimensionality

Exploration/exploitation dilemma

Model-based vs model-free RL

Interactive vs. non-interactive algorithms

On-policy vs. off-policy algorithms

Non-interactive: D = {(si ,ai , ri ,s′i )}i∈[1;N]

→ no exploration/exploitation dilemma; batch learning.
Interactive episodic: trajectories (s0,a0, r0,s1, . . . ,sN ,aN , rN ,sN+1)
→ Interactive “with reset”; Monte-Carlo-like methods; is s0 known?
Interactive non-episodic: (s,a, r ,s′) at each time step
→ the most general case!
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A little vocabulary

Curse of dimensionality

Exploration/exploitation dilemma

Model-based vs model-free RL

Interactive vs. non-interactive algorithms

On-policy vs. off-policy algorithms

Evaluate/improve policy π while applying π ′?
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Next classes

1 Predict a policy’s value.
1 Model-based prediction
2 Monte-Carlo methods
3 Temporal differences
4 Unifying MC and TD: TD(λ )

2 Control the system.
1 Actor-Critic architectures
2 Online problems, the exploration vs. exploitation dilemma
3 Offline problems, focussing on the critic alone
4 An overview of control learning
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