Reinforcement Learning, yet another introduction.
Part 1/3: foundations

Emmanuel Rachelson (ISAE - SUPAERO)
Books

Algorithms for Reinforcement Learning

Csaba Szepesvári

Reinforcement Learning

An Introduction

Richard S. Sutton and Andrew G. Barto
Example 1: exiting a spiral

- Air speed, plane orientation and angular velocities, pressure measurements, commands’ positions …
- Thrust, rudder, yoke.
- Vital maneuver.
Example 2: dynamic treatment regimes for HIV patients

- Anti-bodies concentration . . .
- Choice of drugs (or absence of treatment).
- Long-term, chronic diseases (HIV, depression, . . .).
Example 3: inverted pendulum

- x, \dot{x}, θ, $\dot{\theta}$.
- Push left or right (or don’t push).
- Toy problem representative of many examples (Segway PT, juggling, plane control).
Example 4: queuing systems

- Line length, number of open counters, . . .
- Open or close counters.
- Try to get all passengers on the plane in time (at minimal cost)!
Example 5: portfolio management

- Economic indicators, prices, ...
- Dispatch investment over financial assets.
- Maximize long term revenue.
Example 6: hydroelectric production

- Water level, electricity demand, weather forecast, other sources of energy . . .
- Evaluate “water value” and decide to use it or not.
What do all these systems have in common?

- Prediction or decision over the future.
- Complex / high-dimension / non-linear / non-deterministic environments.
- What matters is not a single decision but the *sequence* of decisions.
- One can quantify the *value* of a sequence of decisions.
Sequential agent-environment interaction
Sequential agent-environment interaction
Questions

A general theory of sequential decision making?

What hypothesis on the “environment”?

What is a “good” behaviour?

Is the knowledge of a model always necessary?

Balancing information acquisition and knowledge exploitation?
1 A practical introduction

2 Modeling the decision problems

3 A few words on solving the model-based case

4 Learning for Prediction and Control
The ingredients

- Set T of *time steps* T.
- Set S of possible *states* s for the system.
- Set A of possible *actions* a of the agent.
- *Transition* dynamics of the system $s' \leftarrow f(?)$.
- *Rewards* (reinforcement signal) at each time step $r(?)$.

```
reward:  r(?)
state:    s   s' = f(?)
time:     t    t + 1
```
Markov Decision Processes

Sequential decision under probabilistic action uncertainty:

Markov Decision Process (MDP)

5-tuple $\langle S, A, p, r, T \rangle$
Markov transition model $p(s'|s, a)$
Reward model $r(s, a)$
Set T of decision epochs $\{0, 1, \ldots, H\}$

Infinite (or unbounded) horizon: $H \rightarrow \infty$
Markov Decision Processes

Sequential decision under probabilistic action uncertainty:

Markov Decision Process (MDP)

5-tuple $\langle S, A, p, r, T \rangle$

- Markov transition model $p(s' | s, a)$
- Reward model $r(s, a)$
- Set T of decision epochs $\{0, 1, \ldots, H\}$

Infinite (or unbounded) horizon: $H \to \infty$

```
reward:      $r(s, a)$
state:       \( s \xrightarrow{s'} \sim p(s' | s, a) \)
time:        \( t \xrightarrow{+1} t + 1 \)
```
What is a behaviour?

Policy

A policy is a sequence of decision rules \(\delta_t: \pi = \{\delta_t\}_{t \in \mathbb{N}} \),
with \(\delta_t : \begin{cases} S^{t+1} \times A^t & \rightarrow & P'(A) \\ h & \mapsto & \delta_t(a|h) \end{cases} \)

\(\delta_t(a|h) \) indicates the distribution over action \(a \) to undertake at time \(t \), given the history of states/actions \(h \).
Evaluating a sequence of policy?

What can I expect on the long-term, from this sequence of actions, in my current state?

E.g.

\[s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots \rightarrow s_{n+1} \]

\[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots + \gamma^n r_n \]

Several criteria:

- **Average reward**
 \[V(s) = \mathbb{E} \left(\lim_{H \to \infty} \frac{1}{H} \sum_{\delta=0}^{H} r_{\delta} \mid s_0 = s \right) \]

- **Total reward**
 \[V(s) = \mathbb{E} \left(\lim_{H \to \infty} \sum_{\delta=0}^{H} r_{\delta} \mid s_0 = s \right) \]

- **\(\gamma \)-discounted reward**
 \[V(s) = \mathbb{E} \left(\lim_{H \to \infty} \sum_{\delta=0}^{H} \gamma^\delta r_{\delta} \mid s_0 = s \right) \]

→ value of a state under a certain behaviour.
Evaluating a policy

Value function of a policy under a γ-discounted criterion

$$V^\pi : \begin{cases} S \rightarrow \mathbb{R} \\ s \mapsto V^\pi(s) = \mathbb{E} \left(\lim_{H \rightarrow \infty} \sum_{\delta=0}^{H} \gamma^\delta r_\delta \bigg| s_0 = s, \pi \right) \right)$$
Optimal policies

\(\pi^* \) is said to be optimal iff \(\pi^* \in \arg\max_\pi V^\pi \).

A policy is optimal if it dominates over any other policy in every state:

\[\pi^* \text{ is optimal} \iff \forall s \in S, \forall \pi, \ V^{\pi^*}(s) \geq V^\pi(s) \]
First fundamental result

Fortunately...

Optimal policy

For \(\gamma \)-discounted criterion
infinite horizon
stationary, deterministic, Markovian policy.

- Markovian:
 \[
 \forall (s_i, a_i) \in (S \times A)^{t-1}, \forall (s'_i, a'_i) \in (S \times A)^{t-1}, \delta_t(a|s_0, a_0, \ldots, s_t) = \delta_t(a|s'_0, a'_0, \ldots, s_t).
 \]
 One writes \(\delta_t(a|s) \).

- Stationary:
 \[
 \forall (t, t') \in \mathbb{N}^2, \delta_t = \delta_{t'}.
 \]
 One writes \(\pi = \delta_0 \).

- Deterministic:
 \[
 \delta_t(a|h) = \begin{cases}
 1 & \text{for a single } a \\
 0 & \text{otherwise}
 \end{cases}
 \]
Let’s play with actions

What’s the value of “a then π”?

$$Q^\pi (s, a) = \mathbb{E} \left(\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \middle| s_0 = s, a_0 = a, \pi \right)$$

$$= r(s, a) + \mathbb{E} \left(\sum_{t=1}^{\infty} \gamma^t r(s_t, a_t) \middle| s_0 = s, a_0 = a, \pi \right)$$

$$= r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \mathbb{E} \left(\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \middle| s_1 = s', \pi \right)$$

$$= r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^\pi (s')$$

The best one-step lookahead action can be selected by maximizing Q^π.

- To improve on a policy π, it is more useful to know Q^π than V^π and pick the greedy action.
- Also $V^\pi(s) = Q^\pi(s, \pi(s))$. Let’s replace that above (next slide).
Computing a policy’s value function

Evaluation equation

V^π is a solution to the linear system:

$$V^\pi (s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) \ V^\pi (s')$$

$$V^\pi = r^\pi + \gamma P^\pi V^\pi = T^\pi V^\pi$$

Similarly:

$$Q^\pi (s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \ Q^\pi (s', \pi(s'))$$

$$Q^\pi = r + \gamma PQ^\pi = T^\pi Q^\pi$$

Recall also that $V^\pi(s) = \mathbb{E} \left(\sum_{\delta=0}^{\infty} \gamma^\delta r(s_\delta, \pi(s_\delta)) \middle| s_0 = s \right)$
Computing a policy’s value function

Evaluation equation

V^π is a solution to the linear system:

$$V^\pi(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V^\pi(s')$$

$$V^\pi = r^\pi + \gamma P^\pi V^\pi = T^\pi V^\pi$$

Similarly:

$$Q^\pi(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) Q^\pi(s', \pi(s'))$$

$$Q^\pi = r + \gamma P Q^\pi = T^\pi Q^\pi$$

Notes:

- For continuous state and action spaces $\sum \rightarrow \int$
- For stochastic policies: $\forall s \in S, \quad V^\pi(s) = \sum_{a \in A} \pi(s, a) \left(r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^\pi(s') \right)$
Properties of T^π

\[
T^\pi V^\pi (s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) \ V^\pi (s')
\]

\[
T^\pi V^\pi = r^\pi + \gamma P^\pi V^\pi
\]

Solving the evaluation equation

- T^π is linear.

⇒ Solving $V^\pi = T^\pi V^\pi$ and $Q^\pi = T^\pi Q^\pi$ by matrix inversion?
With $\gamma < 1$, $V^\pi = (I - \gamma P^\pi)^{-1} r^\pi$ and $Q^\pi = (I - \gamma P)^{-1} r^\pi$

- With $\gamma < 1$, T^π is a $\| \cdot \|_\infty$-contraction mapping over the $\mathcal{F}(S, \mathbb{R})$ (resp. $\mathcal{F}(S \times A, \mathbb{R})$) Banach space.

⇒ With $\gamma < 1$, V^π (resp. Q^π) is the unique solution to the (linear) fixed point equation $V = T^\pi V$ (resp. $Q = T^\pi Q$).
Characterizing an optimal policy

Find π^* such that $\pi^* \in \arg\max \ V^\pi(s)$.

Notation: $V^{\pi^*} = V^*$, $Q^{\pi^*} = Q^*$

Let’s play with our intuitions:

- One has $Q^*(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^*(s')$.
- If π^* is an optimal policy, then $V^*(s) = Q^*(s, \pi^*(s))$.

Optimal greedy policy

Any policy π defined by $\pi(s) \in \arg\max_{a \in A} Q^*(s, a)$ is an optimal policy.
The key theorem:

Bellman optimality equation

The optimal value function obeys:

\[
V^*(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V^*(s') \right\} = T^* V^*
\]

or in terms of \(Q\)-functions:

\[
Q^*(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) \max_{a' \in A} Q^*(s', a') = T^* Q^*
\]
Properties of T^*

\[V^*(s) = \max_{\pi} V^\pi(s) \]

\[V^*(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^*(s) \right\} = T^* V^* \]

Solving the optimality equation

- T^* is non-linear.
- T^* is a $\| \cdot \|_\infty$-contraction mapping over the $\mathcal{F}(S, \mathbb{R})$ (resp. $\mathcal{F}(S \times A, \mathbb{R})$) Banach space.

\Rightarrow V^* (resp. Q^*) is the unique solution to the fixed point equation $V = TV$ (resp. $Q = TQ$).
Let’s summarize

Formalizing the control problem:

- Environment (discrete time, non-deterministic, non-linear) \leftrightarrow MDP.
- Behaviour \leftrightarrow control policy $\pi : s \mapsto a$.
- Policy evaluation criterion \leftrightarrow γ-discounted criterion.
- Goal \leftrightarrow Maximize value function $V^\pi(s)$, $Q^\pi(s, a)$.
- Evaluation eq. \leftrightarrow $V^\pi = T^\pi V^\pi$, $Q^\pi = T^\pi Q^\pi$.
- Bellman optimality eq. \leftrightarrow $V^* = T^* V^*$, $Q^* = T^* Q^*$.

Now what?

- p and r are known \rightarrow Probab. Planning, Stochastic Optimal Control.
- p and r are unknown \rightarrow Reinforcement Learning.
1. A practical introduction

2. Modeling the decision problems

3. A few words on solving the model-based case

4. Learning for Prediction and Control
How does one find π^*?

Three “standard” approaches:

- Dynamic Programming in value function space
 \rightarrow Value Iteration
- Dynamic Programming in policy space
 \rightarrow Policy Iteration
- Linear Programming in value function space

We won’t see each algorithm in detail, nor explain all their variants. The goal of this section is to illustrate three fundamentally different ways of computing an optimal policy, based on Bellman’s optimality equation.
Value Iteration

Key idea:

\[V^*(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^*(s) \right\} = T^* V^* \]

Value iteration

- \(T^* \) is a contraction mapping,
- Value function space is a Banach space.

\[\Rightarrow \text{The sequence } V_{n+1} = T^* V_n \text{ converges to } V^*. \]

\(\pi^* \) is the \(V^* \)-greedy policy.
Value Iteration

Init: \(V' \leftarrow V_0 \).

repeat
\begin{align*}
V &= V' \\
\text{for } s \in S \text{ do} \\
V'(s) &\leftarrow \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s') \right\}
\end{align*}
until \(\| V' - V \| \leq \varepsilon \)

return greedy policy w.r.t. \(V' \)
Value Iteration

Init: $Q' \leftarrow Q_0$.

repeat
 $Q = Q'$
 for $(s, a) \in S \times A$ do
 $Q'(s, a) \leftarrow r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \max_{a' \in A} Q(s', a')$
 until $\|Q' - Q\| \leq \varepsilon$

return greedy policy w.r.t. Q'
Illustration - an investment dilemma

A gambler’s bet on a coin flip:
- Tails ⇒ looses his stake.
- Heads ⇒ wins as much as his stake.

- **Goal** reach 100 pesos!
- **States** $S = \{1, \ldots, 99\}$.
- **Actions** $A = \{1, 2, \ldots, \min(s, 100 - s)\}$
- **Rewards** $+1$ when the gambler reaches 100 pesos.
- **Transitions** Probability of heads-up $= \rho$.
- **Discount** $\gamma = 1$

$$V^\pi \rightarrow \text{probability of reaching the goal.}$$

$\pi^* \text{ maximizes } V^\pi$
Illustration - an investment dilemma, \(p = 0.4 \)

Matlab demo.
Policy Iteration

Key idea:

$$\pi^* = \arg \max_{\pi} V^\pi$$

$$V^\pi = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s' | s, \pi(s)) V^\pi(s') = T^\pi V^\pi$$

Policy iteration

A policy that is Q^π-greedy is not worse than π.

→ iteratively improve and evaluate the policy.

Instead of a path V_0, V_1, \ldots among value functions, let's search for a path π_0, π_1, \ldots among policies.
Policy Iteration

Policy evaluation: V^{π_n}

One-step improvement: π_{n+1}
Policy Iteration

Init: $\pi' \leftarrow \pi_0$.

repeat

$\pi \leftarrow \pi'$

$V^\pi \leftarrow \text{Solve } V = T^\pi V$

for $s \in S$ do

$\pi'(s) \leftarrow \arg \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^\pi(s') \right\}$

until $\pi' = \pi$

return π
Policy Iteration

Init: $\pi' \leftarrow \pi_0$.

repeat

\[\pi \leftarrow \pi' \]

\[Q^\pi \leftarrow \text{Solve } Q = T^\pi Q \]

for $s \in S$ do

\[\pi'(s) \leftarrow \arg \max_{a \in A} Q^\pi(s, a) \]

until $\pi' = \pi$

return π
Illustration - an investment dilemma, $p = 0.4$

Matlab demo.
Linear Programming

Key idea: formulate the optimality equation as a linear problem.
“V^* is the smallest value that dominates over all policy values”

$$\forall s \in S, V(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s') \right\}$$
Linear Programming

Key idea: formulate the optimality equation as a linear problem.

“V^* is the smallest value that dominates over all policy values”

$$\forall s \in S, V(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s') \right\}$$

$$\iff$$

$$\begin{cases}
\min \sum_{s \in S} V(s) \\
\text{s.t. } \forall \pi, V \geq T^\pi V
\end{cases}$$
Linear Programming

Key idea: formulate the optimality equation as a linear problem.

“V^* is the smallest value that dominates over all policy values”

\[\forall s \in S, \ V(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s') \right\} \]

\[\iff \]

\[\left\{ \begin{array}{ll}
\min \sum_{s \in S} V(s) \\
\text{s.t. } \forall \pi, \ V \geq T^\pi V
\end{array} \right\} \]

\[\iff \]

\[\left\{ \begin{array}{ll}
\min \sum_{s \in S} V(s) \\
\text{s.t. } \forall (s, a) \in S \times A, \ V(s) - \gamma \sum_{s' \in S} p(s'|s, a) V(s') \geq r(s, a)
\end{array} \right\} \]
In a nutshell

To solve Bellman’s optimality equation:

- The sequence of $V_{n+1} = T^* V_n$ converges to V^*
 \rightarrow Value Iteration.

- The sequence of $\pi_{n+1} \in \arg\max_a Q^{\pi_n}$ converges to π^*
 \rightarrow Policy Iteration.

- V^* is the smallest function s.t.
 $V(s) \geq r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s')$ \rightarrow Linear Programming resolution.
1. A practical introduction

2. Modeling the decision problems

3. A few words on solving the model-based case

4. Learning for Prediction and Control
Wait a minute. . .

. . . so far, we’ve characterized and searched for optimal policies, using the supposed properties (p and r) of the environment.

We’ve been using p and r each time! We’re cheating!

Where’s the learning you promised?

We’re coming to it. Let’s put it all in perspective.
Let’s put it all in perspective: RL within ML

A taxonomy of Machine Learning

- **Supervised Learning**
- **Unsupervised Learning**
- **Reinforcement Learning**
Let’s put it all in perspective: RL within ML

Different learning tasks

- **Supervised Learning**: learning from a teacher
 - classifiers, regressors (e.g., SVMs, neural networks, trees)

- **Unsupervised Learning**: learning from similarity
 - clusters, self-organized data (e.g., k-means, Kohonen maps, PCA)

- **Reinforcement Learning**: learning by interaction
 - value function, control policy (e.g., TD-learning, Q-learning)
Let’s put it all in perspective: RL within ML

What kind of input?

Supervised Learning
- learning from a teacher
- information: correct examples

Unsupervised Learning
- learning from similarity
- information: unlabeled examples

Reinforcement Learning
- learning by interaction
- information: trial and error
Let’s put it all in perspective: RL within ML

For what goal?

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>Unsupervised Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning from a teacher</td>
<td>learning from similarity</td>
</tr>
<tr>
<td>information: correct examples</td>
<td>information: unlabeled examples</td>
</tr>
<tr>
<td>generalize from examples</td>
<td>identify structure in the data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reinforcement Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning by interaction</td>
</tr>
<tr>
<td>information: trial and error</td>
</tr>
<tr>
<td>reinforce good choices</td>
</tr>
</tbody>
</table>
Let’s put it all in perspective: RL within ML

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>Unsupervised Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning from a teacher</td>
<td>learning from similarity</td>
</tr>
<tr>
<td>information: correct examples</td>
<td>information: unlabeled examples</td>
</tr>
<tr>
<td>generalize from examples</td>
<td>identify structure in the data</td>
</tr>
<tr>
<td>classifier, regressor</td>
<td>clusters, self-organized data</td>
</tr>
</tbody>
</table>

Reinforcement Learning

- learning by interaction
- information: trial and error
- reinforce good choices
- value function, control policy

Which outputs?
Let’s put it all in perspective: RL within ML

Examples of algorithms

Supervised Learning
- learning from a teacher
- information: correct examples
- generalize from examples
- classifier, regressor
- SVMs, neural networks, trees

Unsupervised Learning
- learning from similarity
- information: unlabeled examples
- identify structure in the data
- clusters, self-organized data
- k-means, Kohonen maps, PCA

Reinforcement Learning
- learning by interaction
- information: trial and error
- reinforce good choices
- value function, control policy
- TD-learning, Q-learning
Reinforcement Learning

Evaluate and improve a policy based on experience samples.
Reinforcement Learning

experience samples?
→ \((s, a, r, s')\)
Reinforcement Learning

Two problems in RL:

- *Predict* a policy’s value.
- *Control* the system.
A little vocabulary

- Curse of dimensionality

Number of states, actions or outcomes grows exponentially with number of dimensions.
E.g. continuous control problem in $S = [0; 1]^{10}$, discretized with a step-size of $1/10 \rightarrow 10^{10}$ states!
A little vocabulary

- Curse of dimensionality
- Exploration/exploitation dilemma

Where are the good rewards?
Exploit whatever good policy has been found so far or explore unknown transitions hoping for more?
How to balance exploration and exploitation?
A little vocabulary

- Curse of dimensionality
- Exploration/exploitation dilemma
- Model-based vs model-free RL

Also called indirect vs. direct RL.

Indirect: \(\{(s, a, r, s')\} \rightarrow (p, r) \rightarrow V^\pi \) or \(\pi^* \)

Direct: \(\{(s, a, r, s')\} \rightarrow V^\pi \) or \(\pi^* \)
A little vocabulary

- Curse of dimensionality
- Exploration/exploitation dilemma
- Model-based vs model-free RL
- Interactive vs. non-interactive algorithms

Non-interactive: $\mathcal{D} = \{(s_i, a_i, r_i, s'_i)\}_{i \in [1; N]}$
→ no exploration/exploitation dilemma; batch learning.

Interactive episodic: trajectories $(s_0, a_0, r_0, s_1, \ldots, s_N, a_N, r_N, s_{N+1})$
→ Interactive “with reset”; Monte-Carlo-like methods; is s_0 known?

Interactive non-episodic: (s, a, r, s') at each time step
→ the most general case!
A little vocabulary

- Curse of dimensionality
- Exploration/exploitation dilemma
- Model-based vs model-free RL
- Interactive vs. non-interactive algorithms
- On-policy vs. off-policy algorithms

Evaluate/improve policy π while applying π'?
Next classes

1. **Predict** a policy’s value.
 - 1. Model-based prediction
 - 2. Monte-Carlo methods
 - 3. Temporal differences
 - 4. Unifying MC and TD: TD(λ)

2. **Control** the system.
 - 1. Actor-Critic architectures
 - 2. Online problems, the exploration vs. exploitation dilemma
 - 3. Offline problems, focusing on the critic alone
 - 4. An overview of control learning