Reinforcement Learning, yet another introduction. Part 2/3: Prediction problems

Emmanuel Rachelson (ISAE - SUPAERO)

• What's an MDP?

 $TD(\lambda)$

• What's an MDP?

$$\{S,A,p,r,T\}$$

Introduction

• What's an MDP?

$$\{S, A, p, r, T\}$$

• Deterministic, Markovian, Stationary policies?

Introduction

What's an MDP?

$$\{S, A, p, r, T\}$$

Deterministic, Markovian, Stationary policies?
 At least one is optimal

Introduction

What's an MDP?

$$\{S, A, p, r, T\}$$

- Deterministic, Markovian, Stationary policies?
 At least one is optimal
- Evaluation equation?

Introduction

What's an MDP?

$$\{S, A, p, r, T\}$$

Deterministic, Markovian, Stationary policies?

At least one is optimal

Evaluation equation?

$$Q^{\pi}(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,\pi(s)) Q^{\pi}(s',\pi(s'))$$

Introduction

What's an MDP?

$$\{S, A, p, r, T\}$$

Deterministic, Markovian, Stationary policies?

At least one is optimal

• Evaluation equation?

$$Q^{\pi}(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,\pi(s)) Q^{\pi}(s',\pi(s'))$$

Value Iteration?

Introduction

What's an MDP?

$$\{S, A, p, r, T\}$$

Deterministic, Markovian, Stationary policies?

At least one is optimal

Evaluation equation?

$$Q^{\pi}(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,\pi(s)) Q^{\pi}(s',\pi(s'))$$

Value Iteration?

Repeat
$$V_{n+1}(s) = \max_{a \in A} \left\{ r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) V_n^*(s) \right\}$$

Challenge!

Estimate the travel time to D, when in A, B, C?

Model-based prediction

... or Adaptive Dynamic Programming, or Indirect RL.

Properties

- Converges to p, r and V^{π} if i.i.d. samples.
- Works online and offline.

Introduction

Happened once

Introduction

Happened 3 times

Introduction

Happened 6 times

 $TD(\lambda)$

$$\Rightarrow \hat{P}(s'|s_1, \pi(s_1)) = \begin{cases} 0.1 & \text{if } s' = s_2 \\ 0.9 & \text{if } s' = s_3 \\ 0 & \text{otherwise} \end{cases}$$
and $r(s_1, \pi(s_1)) = 0.1 \cdot 0.5 + 0.9 \cdot 0.2 = 0.23$

Monte-Carlo

$$\hat{P}(s'|s,\pi(s)) o P^\pi$$
 and $r(s,\pi(s)) o r^\pi$
Solve $V^\pi=(I-\gamma P^\pi)^{-1}r^\pi$

Model-based prediction

- Incremental version: straightforward
- Does not require full episodes for model updates
- Requires maintaining a memory of the model
- Has to be adapted for continuous domains
- Requires many resolutions of $V^{\pi} = T^{\pi}V^{\pi}$

Question

Introduction

And without a model?

Episode-based method

Data: a set of trajectories.

$$egin{aligned} \mathscr{D} &= \{h_i\}_{i \in [1,N]} \,, \; h_i = (s_{i0}, a_{i0}, r_{i0}, s_{i1}, a_{i1}, r_{i1}, \ldots) \ R_{ij} &= \sum_{k \geq j} \gamma^{k-j} r_{ik} \ V^{\pi}(s) &= rac{\sum_{ij} R_{ij} \mathbb{1}_s(s_{ij})}{\sum_{ij} \mathbb{1}_s(s_{ij})} \end{aligned}$$

Introduction

Happened once

 $TD(\lambda)$

Happened 3 times

Introduction

Happened 6 times

 $TD(\lambda)$

 $TD(\lambda)$

Example

$$V^{\pi}(s_3) = \frac{3 \cdot 0.0 + 6 \cdot 0.1}{3 + 6} = \frac{1}{15}$$

Offline Monte-Carlo

- Requires finite-length episodes
- Requires to remember full episodes
- Online version ?

Online Monte-Carlo

After each episode, update each encountered state's value.

Episode:
$$h = (s_0, a_0, r_0,...)$$

$$R_t = \sum_{i>t} \gamma^{i-t} r_t$$
 $V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \left[R_t - V^{\pi}(s_t) \right]$

Driving home!

Online Monte-Carlo

- Requires finite-length episodes.
- Only requires to remember one episode at a time.
- Converges to V^{π} if (Robbins-Monroe conditions):

$$\sum_{t=0}^{\infty} \alpha_t = \infty \quad \text{ and } \quad \sum_{t=0}^{\infty} \alpha_t^2 < \infty.$$

 One rare event along the episode affects the estimate of all previous states.

> Wasn't it possible to update $A \rightarrow D$'s expected value as soon as we observe a new $A \rightarrow B$?

TD(0)

With each sample (s_t, a_t, r_t, s_{t+1}) :

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \left[r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \right]$$

Driving home!

- $r_t + \gamma V^{\pi}(s_{t+1}) V^{\pi}(s_t)$ = prediction temporal difference
- Using $V^{\pi}(s_{t+1})$ to update $V^{\pi}(s_t)$ is called *bootstrapping*
- Sample-by-sample update, no need to remember full episodes.
- Adapted to non-episodic problems.
- Converges to V^{π} if (Robbins-Monroe conditions):

$$\sum_{t=0}^{\infty} \alpha_t = \infty \quad \text{and} \quad \sum_{t=0}^{\infty} \alpha_t^2 < \infty.$$

Usually, TD methods converge faster than MC, but not always!

Can we have the advantages of both MC and TD methods?

What's inbetween TD and MC?

TD(0): 1-sample update with bootstrapping MC: ∞-sample update no bootstrapping

inbetween: n-sample update with bootstrapping

n-step TD updates

Take a finite-length episode $(s_t, r_t, s_{t+1}, \dots, s_T)$

$$\begin{array}{c|c} R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots + \gamma^{T-t-1} r_{T-1} & \text{MC} \\ \hline R_t^{(1)} = r_t + \gamma V_t(s_{t+1}) & \text{1-step TD = TD(0)} \\ \hline R_t^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 V_t(s_{t+2}) & \text{2-step TD} \\ \hline R_t^{(n)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots + \gamma^n V_t(s_{t+n}) & \text{n-step TD} \\ \hline \end{array}$$

 $R_{t}^{(n)}$ is the *n*-step target or *n*-step return. MC method: ∞-step returns.

n-step temporal difference:

$$V(s_t) \leftarrow V(s_t) + \alpha \left[R_t^{(n)} - V(s_t) \right]$$

n-step TD updates

- Converge to the true V^{π} , just like TD(0) and MC methods.
- Needs to wait for n steps to perform updates.
- Not really used but useful for what follows.

 $TD(\lambda)$

Mixing *n*-step and *m*-step returns

Consider
$$R_t^{mix} = \frac{1}{3}R_t^{(2)} + \frac{2}{3}R_t^{(4)}$$
.

$$V(s_t) \leftarrow V(s_t) + \alpha \left[R_t^{mix} - V(s_t) \right]$$

Converges to V^{π} as long as the weights sum to 1!

λ -return (1/2)

Consider the
$$\lambda$$
-return $R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$.

The λ -return is the mixing of *all n*-step returns, with weights $(1 - \lambda)\lambda^n$.

Consider the
$$\lambda$$
-return $R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$.

The λ -return is the mixing of *all n*-step returns, with weights $(1 - \lambda)\lambda^n$.

$$V(s_t) \leftarrow V(s_t) + \alpha \left[R_t^{\lambda} - V(s_t)\right]$$

$$r_{t+1} = r_{t+2} \cdot s_{t+2} \cdot r_{t+3} \cdot s_{t+3} \cdot r_{t+3} \cdot r_{t+4} \cdot r$$

λ -return (1/2)

Consider the λ -return $R_t^{\lambda} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^{n-1} R_t^{(n)}$.

The λ -return is the mixing of *all n*-step returns, with weights $(1 - \lambda)\lambda^n$.

On a finite length episode of length T, $\forall k > 0$, $R_t^{(T-t+k)} = R_t$.

$$R_{t}^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_{t}^{(n)} + (1 - \lambda) \sum_{n=T-t}^{\infty} \lambda^{n-1} R_{t}^{(n)}$$

$$= (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_{t}^{(n)} + (1 - \lambda) \lambda^{T-t-1} \sum_{n=T-t}^{\infty} \lambda^{n-T+t} R_{t}^{(n)}$$

$$= (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_{t}^{(n)} + (1 - \lambda) \lambda^{T-t-1} \sum_{k=0}^{\infty} \lambda^{k} R_{t}^{(T-t+k)}$$

$$= (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_{t}^{(n)} + \lambda^{T-t-1} R_{t}$$

λ -return (2/2)

With
$$R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$$
, on finite episodes:
$$R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t$$
 When $\lambda = 0$, TD(0)! When $\lambda = 1$, MC!
$$V(s_t) \leftarrow V(s_t) + \alpha \left[R_t^{\lambda} - V(s_t) \right]$$

Monte-Carlo

But how do we compute R_t^{λ} without running infinite episodes?

 λ -return algorithm.

Eligibility traces

Eligibity trace of state s: $e_t(s)$.

$$e_t(s) = \left\{ egin{array}{ll} \gamma\lambda\,e_{t-1}(s) & ext{if } s
eq s_t \ \gamma\lambda\,e_{t-1}(s) + 1 & ext{if } s = s_t \ \end{array}
ight.$$

If no visit to a state, exponential decay.

 $\rightarrow e_t(s)$ measures how old the last visit to s is.

$TD(\lambda)$

Given a new sample (s_t, a_t, r_t, s'_t) .

- Temporal difference $\delta = r_t + \gamma V(s_t') V(s_t)$.
- ② Update eligibility traces for all states $e(s) \leftarrow \begin{cases} \gamma \lambda \, e(s) & \text{if } s \neq s_t \\ \gamma \lambda \, e_{t-1}(s) + 1 & \text{if } s = s_t \end{cases}$
- **③** Update all state's values $V(s) \leftarrow V(s) + \alpha e(s) \delta$

Initially, e(s) = 0.

$TD(\lambda)$

Given a new sample (s_t, a_t, r_t, s'_t) .

- Temporal difference $\delta = r_t + \gamma V(s'_t) V(s_t)$.
- ② Update eligibility traces for all states $e(s) \leftarrow \begin{cases} \gamma \lambda \, e(s) & \text{if } s \neq s_t \\ \gamma \lambda \, e_{t-1}(s) + 1 & \text{if } s = s_t \end{cases}$
- **1** Update all state's values $V(s) \leftarrow V(s) + \alpha e(s) \delta$

Initially, e(s) = 0.

- If $\lambda = 0$, e(s) = 0 except in $s_t \Rightarrow$ standard TD(0)
- For $0 < \lambda < 1$, e(s) indicates a distance $s \leftrightarrow s_t$ is in the episode.
- ullet If $\lambda=$ 1, $e(s)=\gamma^{ au}$ where au= duration since last visit to $s_{t}\Rightarrow$ MC method

Earlier states are given e(s) credit for the TD error δ

TD(1)

- TD(1) implements Monte Carlo estimation on non-episodic problems!
- TD(1) learns incrementally for the same result as MC

Equivalence

 $TD(\lambda)$ is equivalent to the λ -return algorithm.

 $TD(\lambda)$

Prediction problems — summary

- Prediction = evaluation of a given behaviour
- Model-based prediction
- Monte Carlo (offline and online)
- Temporal Differences, TD(0)
- Unifying MC and TD: $TD(\lambda)$

Going further

- Best value of λ?
- Other variants?
- Very large state spaces?
- Continuous state spaces?
- Value function approximation?

Next class

Control

- Online problems
 - Q-learning
 - SARSA
- Offline learning
 - (fitted) Q-iteration
 - (least squares) Policy Iteration