Reinforcement Learning,
yet another introduction.
Part 2/3: Prediction problems

Emmanuel Rachelson (ISAE - SUPAERO)
Quiz!

- What’s an MDP?
Quiz!

- What’s an MDP?

\[\{ S, A, p, r, T \} \]
Quiz!

- What’s an MDP?
 \[\{ S, A, p, r, T \} \]

- Deterministic, Markovian, Stationary policies?
Quiz!

- What’s an MDP?
 \[\{ S, A, p, r, T \} \]

- Deterministic, Markovian, Stationary policies?
 At least one is optimal
Quiz!

- What’s an MDP?
 \[
 \{ S, A, p, r, T \}
 \]
- Deterministic, Markovian, Stationary policies?
 At least one is optimal
- Evaluation equation?
Quiz!

- **What’s an MDP?**

 \[\{ S, A, p, r, T \} \]

- **Deterministic, Markovian, Stationary policies?**

 At least one is optimal

- **Evaluation equation?**

 \[
 Q^\pi(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) Q^\pi(s', \pi(s'))
 \]
Quiz!

- What’s an MDP?
 \(\{ S, A, p, r, T \} \)

- Deterministic, Markovian, Stationary policies?
 At least one is optimal

- Evaluation equation?
 \[
 Q^\pi(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) Q^\pi(s', \pi(s'))
 \]

- Value Iteration?
Quiz!

- What’s an MDP?

 \[\{ S, A, p, r, T \} \]

- Deterministic, Markovian, Stationary policies?

 At least one is optimal

- Evaluation equation?

 \[
 Q^\pi(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) Q^\pi(s', \pi(s'))
 \]

- Value Iteration?

 Repeat \[V_{n+1}(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^*_n(s) \right\} \]
Challenge!

Estimate the travel time to D, when in A, B, C?
Model-based prediction

... or Adaptive Dynamic Programming, or Indirect RL.

\[
\{(s, a, r, s')\} \quad \downarrow \\
\begin{cases}
\text{Frequency count or parametric adaptation} & \rightarrow p \\
\text{Average} & \rightarrow r
\end{cases}
\]

\[
\downarrow \\
\text{Solve } V = T^{\pi} V.
\]

Properties

- Converges to \(p, r \) and \(V^{\pi} \) if i.i.d. samples.
- Works online and offline.
Example

Happened once
Example

Happened 3 times
Example

Happened 6 times
Example

\[\hat{P}(s'|s_1, \pi(s_1)) = \begin{cases}
0.1 & \text{if } s' = s_2 \\
0.9 & \text{if } s' = s_3 \\
0 & \text{otherwise}
\end{cases} \]

and \(r(s_1, \pi(s_1)) = 0.1 \cdot 0.5 + 0.9 \cdot 0.2 = 0.23 \)

\[\hat{P}(s'|s, \pi(s)) \rightarrow P^\pi \text{ and } r(s, \pi(s)) \rightarrow r^\pi \]

Solve \(V^\pi = (I - \gamma P^\pi)^{-1} r^\pi \)
Model-based prediction

- Incremental version: straightforward
- Does not require full episodes for model updates
- Requires maintaining a memory of the model
- Has to be adapted for continuous domains
- Requires many resolutions of $V^\pi = T^\pi V^\pi$
Question

And without a model?
Offline Monte-Carlo

Episode-based method

Data: a set of trajectories.

\[D = \{ h_i \}_{i \in [1, N]} , \ h_i = (s_{i0}, a_{i0}, r_{i0}, s_{i1}, a_{i1}, r_{i1}, \ldots) \]

\[R_{ij} = \sum_{k \geq j} \gamma^{k-j} r_{ik} \]

\[V^\pi(s) = \frac{\sum_{ij} R_{ij} 1_s(s_{ij})}{\sum_{ij} 1_s(s_{ij})} \]
Example

Happened once
Example

Happened 3 times
Example

Happened 6 times
Example

\[V^\pi(s_3) = \frac{3 \cdot 0.0 + 6 \cdot 0.1}{3 + 6} = \frac{1}{15} \]
Offline Monte-Carlo

- Requires finite-length episodes
- Requires to remember full episodes
- Online version?
Online Monte-Carlo

After each episode, update each encountered state’s value.

Episode: $h = (s_0, a_0, r_0, \ldots)$

$$R_t = \sum_{i > t} \gamma^{i-t} r_t$$

$$V^\pi(s_t) \leftarrow V^\pi(s_t) + \alpha [R_t - V^\pi(s_t)]$$
Example

Driving home!
Online Monte-Carlo

- Requires finite-length episodes.
- Only requires to remember one episode at a time.
- Converges to V^π if (Robbins-Monroe conditions):

$$\sum_{t=0}^{\infty} \alpha_t = \infty \quad \text{and} \quad \sum_{t=0}^{\infty} \alpha_t^2 < \infty.$$

- One rare event along the episode affects the estimate of all previous states.

Wasn’t it possible to update $A \rightarrow D$’s expected value as soon as we observe a new $A \rightarrow B$?
TD(0)

With each sample \((s_t, a_t, r_t, s_{t+1})\):

\[
V^\pi(s_t) \leftarrow V^\pi(s_t) + \alpha [r_t + \gamma V^\pi(s_{t+1}) - V^\pi(s_t)]
\]
Example

Driving home!
- $r_t + \gamma V^\pi(s_{t+1}) - V^\pi(s_t) =$ prediction *temporal difference*
- Using $V^\pi(s_{t+1})$ to update $V^\pi(s_t)$ is called *bootstrapping*
- Sample-by-sample update, no need to remember full episodes.
- Adapted to non-episodic problems.
- Converges to V^π if (Robbins-Monroe conditions):
 \[
 \sum_{t=0}^{\infty} \alpha_t = \infty \quad \text{and} \quad \sum_{t=0}^{\infty} \alpha_t^2 < \infty.
 \]
- Usually, TD methods converge faster than MC, but not always!
Can we have the advantages of both MC and TD methods?

What's inbetween TD and MC?

TD(0): 1-sample update with bootstrapping
MC: ∞-sample update no bootstrapping
inbetween: n-sample update with bootstrapping
n-step TD updates

Take a finite-length episode \((s_t, r_t, s_{t+1}, \ldots, s_T)\)

\[
R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots + \gamma^{T-t-1} r_{T-1}
\]

<table>
<thead>
<tr>
<th>(R_t^{(1)})</th>
<th>(R_t^{(2)})</th>
<th>(R_t^{(n)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_t + \gamma V_t(s_{t+1}))</td>
<td>(r_t + \gamma r_{t+1} + \gamma^2 V_t(s_{t+2}))</td>
<td>(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots + \gamma^n V_t(s_{t+n}))</td>
</tr>
</tbody>
</table>

\(R_t^{(n)}\) is the \(n\)-step target or \(n\)-step return.

MC method: \(\infty\)-step returns.

\[
V(s_t) \leftarrow V(s_t) + \alpha \left[R_t^{(n)} - V(s_t) \right]
\]
n-step TD updates

- Converge to the true V^π, just like TD(0) and MC methods.
- Needs to wait for n steps to perform updates.
- Not really used but useful for what follows.
Mixing n-step and m-step returns

Consider $R_t^{\text{mix}} = \frac{1}{3} R_t^{(2)} + \frac{2}{3} R_t^{(4)}$.

$$V(s_t) \leftarrow V(s_t) + \alpha \left[R_t^{\text{mix}} - V(s_t) \right]$$

Converges to V^π as long as the weights sum to 1!
Consider the λ-return $R_t^\lambda = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$.

The λ-return is the mixing of all n-step returns, with weights $(1 - \lambda)\lambda^n$.
Consider the λ-return $R_t^\lambda = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$.

The λ-return is the mixing of all n-step returns, with weights $(1 - \lambda)\lambda^n$.

$$V(s_t) \leftarrow V(s_t) + \alpha \left[R_t^\lambda - V(s_t) \right]$$
\(\lambda \)-return (1/2)

Consider the \(\lambda \)-return \(R^\lambda_t = (1 - \lambda) \sum_{n=1}^\infty \lambda^{n-1} R_t^{(n)} \).

The \(\lambda \)-return is the mixing of all \(n \)-step returns, with weights \((1 - \lambda) \lambda^n \).

On a finite length episode of length \(T \), \(\forall k > 0 \), \(R_t^{(T-t+k)} = R_t \).

\[
R^\lambda_t = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + (1 - \lambda) \sum_{n=T-t}^\infty \lambda^{n-1} R_t^{(n)} \\
= (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + (1 - \lambda) \lambda^{T-t-1} \sum_{n=T-t}^\infty \lambda^{n-T+t} R_t^{(n)} \\
= (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + (1 - \lambda) \lambda^{T-t-1} \sum_{k=0}^\infty \lambda^k R_t^{(T-t+k)} \\
= (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t
\]
\(\lambda \)-return (2/2)

With \(R_t^\lambda = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)} \), on finite episodes:

\[
R_t^\lambda = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t
\]

When \(\lambda = 0 \), TD(0)!
When \(\lambda = 1 \), MC!

\[
V(s_t) \leftarrow V(s_t) + \alpha \left[R_t^\lambda - V(s_t) \right]
\]
\(\lambda \)-return algorithm.

But how do we compute \(R_t^\lambda \) without running infinite episodes?
Eligibility traces

Eligibility trace of state s: $e_t(s)$.

$$e_t(s) = \begin{cases} \gamma \lambda e_{t-1}(s) & \text{if } s \neq s_t \\ \gamma \lambda e_{t-1}(s) + 1 & \text{if } s = s_t \end{cases}$$

If no visit to a state, exponential decay.

$\rightarrow e_t(s)$ measures how old the last visit to s is.
Given a new sample \((s_t, a_t, r_t, s'_t)\).

1. Temporal difference \(\delta = r_t + \gamma V(s'_t) - V(s_t)\).
2. Update eligibility traces for all states
 \[e(s) \leftarrow \begin{cases}
 \gamma \lambda e(s) & \text{if } s \neq s_t \\
 \gamma \lambda e_{t-1}(s) + 1 & \text{if } s = s_t
 \end{cases} \]
3. Update all state’s values \(V(s) \leftarrow V(s) + \alpha e(s)\delta\)

Initially, \(e(s) = 0\).
TD(λ)

Given a new sample (s_t, a_t, r_t, s'_t).

1. Temporal difference $\delta = r_t + \gamma V(s'_t) - V(s_t)$.

2. Update eligibility traces for all states

 $e(s) \leftarrow \begin{cases}
 \gamma \lambda e(s) & \text{if } s \neq s_t \\
 \gamma \lambda e_{t-1}(s) + 1 & \text{if } s = s_t
 \end{cases}$

3. Update all state’s values $V(s) \leftarrow V(s) + \alpha e(s) \delta$

Initially, $e(s) = 0$.

- If $\lambda = 0$, $e(s) = 0$ except in $s_t \implies$ standard TD(0)
- For $0 < \lambda < 1$, $e(s)$ indicates a distance $s \leftrightarrow s_t$ is in the episode.
- If $\lambda = 1$, $e(s) = \gamma^\tau$ where $\tau =$ duration since last visit to $s_t \implies$ MC method

Earlier states are given $e(s)$ *credit* for the TD error δ
TD(1) implements Monte Carlo estimation on non-episodic problems!

TD(1) learns incrementally for the same result as MC
Equivalence

$\text{TD}(\lambda)$ is equivalent to the λ-return algorithm.
Prediction problems — summary

- Prediction = evaluation of a given behaviour
- Model-based prediction
- Monte Carlo (offline and online)
- Temporal Differences, TD(0)
- Unifying MC and TD: TD(\(\lambda\))
Going further

- Best value of λ?
- Other variants?
- Very large state spaces?
- Continuous state spaces?
- Value function approximation?
Next class

Control

1. Online problems
 1. Q-learning
 2. SARSA

2. Offline learning
 1. (fitted) Q-iteration
 2. (least squares) Policy Iteration