Reinforcement Learning,
yet another introduction.
Part 2/3: Prediction problems

Emmanuel Rachelson (ISAE - SUPAERO)
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@ What's an MDP?
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At least one is optimal
@ Evaluation equation?
Q"(s,a) =r(s,a)+v ¥ p(s']s, n(s))Q" (s, 7(s"))
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Challenge!
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Model-based prediction

...or Adaptive Dynamic Programming, or Indirect RL.

{(57 a,r,s’)}
J
Frequency count or parametric adaptation — p
Average - r
4
Solve V =T7"V.

Properties
@ Converges to p, r and V” if i.i.d. samples.
@ Works online and offline.
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0.1 ifs=s
= P(s'|s1,m(s1))={ 0.9 ifs =s;
0  otherwise

and r(sy,m(s1)) =0.1-0.540.9-0.2 =0.23

P(s'|s,mt(s)) — P* and r(s,n(s)) — r*

Solve V™ = (I—yP*) 1"

TD(A)
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Model-based prediction

Incremental version: straightforward
Does not require full episodes for model updates
Requires maintaining a memory of the model

Has to be adapted for continuous domains

Requires many resolutions of V¥ = T*V7®

Temporal Differences

TD(A)
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Question

And without a model ?

7129
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Offline Monte-Carlo

Episode-based method
Data: a set of trajectories.

2 =A{hi}ici ay» hi = (Si0, @io, Fio, Sit» @in, it - )

Rij = Z Y ri
k>j
ZRI'/]IS(SIJ)
ij

V(s) = 72115(3,])
if

TD(A)
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Offline Monte-Carlo

@ Requires finite-length episodes
@ Requires to remember full episodes

@ Online version ?
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Online Monte-Carlo

After each episode, update each encountered state’s value.
Episode: h = (s, a, ro,---)

R=Y7"n

VE(st) = V(st) + a[Re — V¥ (st)]
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Example

Driving home!
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Online Monte-Carlo

@ Requires finite-length episodes.
@ Only requires to remember one episode at a time.
@ Converges to V7 if (Robbins-Monroe conditions):

iat:oo and i(xt2<oo.
t=0 t=0

@ One rare event along the episode affects the estimate of all previous
states.

Wasn't it possible to update A — D’s expected value
as soon as we observe a new A — B?
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TD(0)

With each sample (st, at, rt, St41):

VE(st) + VF(st) +ot[ri +yV*(st11) — VF(st)]
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Example

Driving home!

15/29



Introduction Model-based prediction Monte-Carlo Temporal Differences TD(A)

11+ YV™(st+1) — V*(s;) = prediction temporal difference
Using V*(s¢+1) to update V*(s;) is called bootstrapping
Sample-by-sample update, no need to remember full episodes.
Adapted to non-episodic problems.

Converges to V7 if (Robbins-Monroe conditions):

iat:oo and iat2<oo.
t=0 t=0

Usually, TD methods converge faster than MC, but not always!
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TD(A)

Can we have the advantages of both MC and TD methods?
What'’s inbetween TD and MC?
TD(0): 1-sample update with bootstrapping

MC: co-sample update no bootstrapping
inbetween: n-sample update with bootstrapping



Introduction Model-based prediction Monte-Carlo Temporal Differences TD(A)

n-step TD updates

Take a finite-length episode (s, 1, St+1,-..,ST)

Ri=ri+ Y1+ Yret+...+y "'rry | MC
Rt(ﬂ = i+ YVi(St41) 1-step TD = TD(0)
Rt(Z) = e+ Yrees + ¥ Vi(stt2) 2-step TD
Rt(”) =+ Y1+ Prisa+ ...+ Y"Vi(St+n) | n-step TD
R |

is the n-step target or n-step return.
MC method: oo-step returns.

n-step temporal difference:
V(s)  V(si)+a [R” — V(s1)|
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n-step TD updates

@ Converge to the true V", just like TD(0) and MC methods.
@ Needs to wait for n steps to perform updates.
@ Not really used but useful for what follows.

19/29



Introduction Model-based prediction Monte-Carlo Temporal Differences TD(A)

Mixing n-step and m-step returns

Consider A = 1R®) + 2R,

V(st) < V(st) +a [R™ — V(sy)]
Converges to V" as long as the weights sum to 1!
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A-return (1/2)

Consider the A-return R} = (1 — 1) )oi ﬂL”*‘Rt(").
1

n—=

The A-return is the mixing of all n-step returns, with weights (1 —2A)A".
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A-return (1/2)
Consider the A-return R} = (1 — 1) )o:o, ﬂL”*‘Rt(").
n=1

The A-return is the mixing of all n-step returns, with weights (1 — A)A".

On a finite length episode of length T, Vk > 0, REFHK) = R;.

T—t-1 o0
RE=(1-21) Y A" 'R +(1-2) ¥ A 'R

n=1 n=T-—t

T—t-1 0o
=(1-2) Y ARV (1 -)AT T Y A THRY
n=1

n=T-—t
T—t-1 o0 T B
=(1-2) Y AR 4 (1 -2)AT Y AKRT T
n=1 k=0

T—t—1
—(1-2) ¥ AR 42T R,

n=1 21/29
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A-return (2/2)

With B> = (1—2) ¥ A"'R", on finite episodes:
n=1
T—t—1

RF=(1-2) Y A" 'R+ AT 1R,

n=1

When A = 0, TD(0)!
When A =1, MC!

V(st) « V(st)+a R} = V(sy)]
A-return algorithm.

But how do we compute I-?,)L without running infinite episodes?
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Eligibility traces

Eligibity trace of state s: e(s).

_ [ 7herq(s) if s# st
ei(s) —{ Yher(s)+1 ifs—s

If no visit to a state, exponential decay.

— e¢(s) measures how old the last visit to s is.
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TD(A)

H /
Given a new sample (s¢, a, 11, S;)-

@ Temporal difference 8§ = r; + yV(s;) — V(st).

© Update eligibility traces for all states

YAe(s) if s# s
o(s) “{ e i(s)+1 ifs=s

@ Update all state’s values V(s) < V(s)+ ae(s)d
Initially, e(s) = 0.
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TD(A)

H /
Given a new sample (s¢, a, 11, S;)-

@ Temporal difference 8§ = r; + yV(s;) — V(st).

© Update eligibility traces for all states
YAe(s) if s# s
o(s) “{ e i(s)+1 ifs=s

@ Update all state’s values V(s) < V(s)+ ae(s)d
Initially, e(s) = 0.

e If A =0, e(s) = 0 except in sy = standard TD(0)
@ For 0 < A <1, e(s) indicates a distance s < s; is in the episode.

e If A =1, e(s) = y* where T = duration since last visit to s; = MC method

Earlier states are given e(s) credit for the TD error &
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TD(1)

@ TD(1) implements Monte Carlo estimation on non-episodic problems!
@ TD(1) learns incrementally for the same result as MC

TD(A)



TD(A) is equivalent to the A-return algorithm.
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Prediction problems — summary

Prediction = evaluation of a given behaviour
Model-based prediction

Temporal Differences, TD(0)

°
°
@ Monte Carlo (offline and online)
°
@ Unifying MC and TD: TD(A)

27/29



Introduction Model-based prediction Monte-Carlo Temporal Differences TD(A)

Going further

Best value of A?
Other variants?

o

o

@ Very large state spaces?
@ Continuous state spaces?
o

Value function approximation?
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Next class

Control

@ Online problems

@ Q-learning
@ SARSA

@ Offline learning

@ (fitted) Q-iteration
@ (least squares) Policy lteration
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