Reinforcement Learning, yet another introduction. Part 3/3: Control problems

Emmanuel Rachelson (ISAE - SUPAERO)

Overview

The madhatter's casino

The madhatter's casino

States 4 rooms Actions 3 slot machines (stacks of cards) Transitions From room to room, following the Mad hatter's will! Rewards Cups of tea Introduction

The madhatter's casino

Brainstorming

The mad hatter's casino

2 Back to Policy Iteration: Generalized PI and Actor-Critic methods

Online problems, the exploration vs. exploitation dilemma

- On-policy TD control: SARSA
- Off-policy control: Q-learning
- Funny comparison

Offline problems, focussing on the critic alone

- Fitted Q-iteration
- Least Squares Policy Iteration

An overview of control learning problems

Reminder: Policy Iteration

Pb of DP methods: long sweeps, lots of useless backups.

Two types of backups:Update Q:
$$Q(s,a) \leftarrow r(s,a) + \sum_{s'} p(s'|s,a)Q(s',\pi(s'))$$
Improve π : $\pi(s) \leftarrow rgmax Q(s,a)$

Pb of DP methods: long sweeps, lots of useless backups.

Two types of backups:Update Q:
$$Q(s,a) \leftarrow r(s,a) + \sum_{s'} p(s'|s,a)Q(s',\pi(s'))$$
Improve π : $\pi(s) \leftarrow rgmax_a Q(s,a)$

Value Iteration

In each state, one update of Q and one improvement of π .

Pb of DP methods: long sweeps, lots of useless backups.

Two types of backups:Update Q:
$$Q(s,a) \leftarrow r(s,a) + \sum_{s'} p(s'|s,a)Q(s',\pi(s'))$$
Improve π : $\pi(s) \leftarrow rgmax_a Q(s,a)$

Policy Iteration

Update *Q* in all states until convergence, then update π in all states.

Pb of DP methods: long sweeps, lots of useless backups.

Two types of backups:Update Q:
$$Q(s,a) \leftarrow r(s,a) + \sum_{s'} p(s'|s,a)Q(s',\pi(s'))$$
Improve π : $\pi(s) \leftarrow \operatorname*{argmax}_{a} Q(s,a)$

Asynchronous Dynamic Programming

As long as every state is visited infinitely often for Bellman backups on *V* or π , the sequences of V_n and π_n converge to V^* and π^* .

DP converges whatever the ordering of the backups!

Introduction

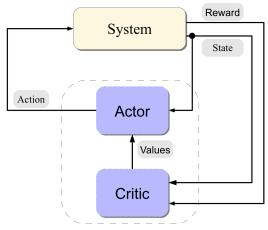
Generalized Policy Iteration

Two interacting processes: policy evaluation and policy improvement.

Not from the model anymore, but from samples.

Generalized Policy Iteration

The bigger picture: actor-critic architectures



Almost all RL algorithms fall into an A-C architecture. Let's look at several ones.

The mad hatter's casino

2 Back to Policy Iteration: Generalized PI and Actor-Critic methods

3 Online problems, the exploration vs. exploitation dilemma

- On-policy TD control: SARSA
- Off-policy control: Q-learning
- Funny comparison

Offline problems, focussing on the critic alone

- Fitted Q-iteration
- Least Squares Policy Iteration

An overview of control learning problems

SARSA — the idea

General view

Let's try to evaluate the current policy's value $\rightarrow Q$, ... while updating π as Q-greedy. What happens? Convergence to π^* Overview

SARSA — the TD update

Remember TD(0):
$$\delta = r + \gamma V(s') - V(s)$$

$$V(s') = Q(s', \pi(s'))$$

Evaluate the current $\pi : \, \delta = r + \gamma Q(s', a') - Q(s, a)$

SARSA — the algorithm

In s, choose (actor) a using Q, then repeat:

- Observe r, s'
- Choose a' (actor) using Q
- $Q(s,a) \leftarrow Q(s,a) + \alpha \delta$

SARSA — convergence

Convergence of SARSA

If, in the limit,

- all (s, a) are visited infinitely often,
- the actor converges to the Q-greedy policy,

Greedy in the limit of infinite exploration (GLIE)

then the actor converges to π^* .

To insure (1), necessary exploration!

Implementing an actor:

•
$$\varepsilon$$
-soft, ε -greedy: $\pi\left(a \neq \operatorname*{argmax}_{a'} Q(s, a')|s\right) = \varepsilon$
• Boltzmann policies $\pi(a|s) = \frac{e^{\frac{Q(s,a)}{\tau}}}{\sum\limits_{a'} e^{\frac{Q(s,a')}{\tau}}}$

SARSA — On-policy critic

SARSA constantly evaluates the current πthat shifts towards π^*

When the critic evaluates the current actor's policy, one talks of *on-policy* algorithms.

Example of off-policy method: Q-learning.

Q-learning — the idea

The critic tries to approximate Q^* , independently of the actions taken by the actor.

Then, as the actor gets *Q*-greedy, it converges to π^* .

Online problems

Q-learning — the TD update

Remember TD(0):
$$\delta = r + \gamma V(s') - V(s)$$

$$V(s') = Q(s', \pi(s'))$$

Evaluate the current π : $\delta = r + \gamma \max_{\substack{a' \ a'}} Q(s', a') - Q(s, a)$

Q-learning — the algorithm

In *s*,

- Choose a (actor) using Q
- Observe r, s'

- $Q(s,a) \leftarrow Q(s,a) + \alpha \delta$
- **o** $s \leftarrow s'$ and repeat

Q-learning — convergence

Convergence of Q-learning

As for SARSA, if, in the limit,

- all (s, a) are visited infinitely often,
- the actor converges to the Q-greedy policy,

then the actor converges to π^* .

Again, to insure (1), necessary exploration!

Implementing an actor:

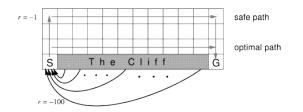
•
$$\varepsilon$$
-soft, ε -greedy: $\pi\left(a \neq \operatorname*{argmax}_{a'} Q(s, a')|s\right) = \varepsilon$
• Boltzmann policies $\pi(a|s) = \frac{e^{\frac{Q(s,a)}{\tau}}}{\sum\limits_{a'} e^{\frac{Q(s,a')}{\tau}}}$

Q-learning — Off-policy critic

Q-learning evaluates the optimal Q^* and not the current π .

It is an *off-policy* algorithm.

Funny comparison: The cliff



States grid positions Actions N, S, E, W

Transitions deterministic

Rewards -100 for falling, -1 otherwise.

- What is the optimal policy?
- With a fixed $\varepsilon = 0.1$ for ε -greedy π , what do you think will happen?
- What if *ɛ* goes to zero?

The mad hatter's casino

2 Back to Policy Iteration: Generalized PI and Actor-Critic methods

3 Online problems, the exploration vs. exploitation dilemma

- On-policy TD control: SARSA
- Off-policy control: Q-learning
- Funny comparison

Offline problems, focussing on the critic alone

- Fitted Q-iteration
- Least Squares Policy Iteration

An overview of control learning problems

Offline problems

No interaction with the environment. Pre-acquired data: $\mathscr{D} = \{(s_i, a_i, r_i, s'_i)\}_{i \in [1, N]}$

No exploration vs. exploitation dilemma. Can usually tackle larger problems.

New problem: Samples only in a subset of $S \times A$, need to generalize and approximate Q or π . Online problems

Fitted *Q*-iteration — the idea

Generalization of Value Iteration.
Reminder (VI):
$$V_{n+1}(s) = \max_{a} \left[r(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s') \right]$$

Q-iteration: $Q_{n+1}(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q_n(s',a')$
online \rightarrow Q-learning
offline \rightarrow Fitted Q-iteration

Fitted *Q*-iteration — the algorithm

The exact case:

• For each (s, a)

►
$$\mathscr{D}_{s,a}$$
 = subset of \mathscr{D} starting with (s, a)
► $Q_{n+1}(s, a) = \frac{1}{|\mathscr{D}_{s,a}|} \sum_{\substack{(s,a,r,s') \in \mathscr{D}_{s,a}}} r + \gamma \max_{a'} Q_n(s', a')$

• Repeat until convergence of Q

With black-box function approximation: $\hat{Q}_0(s, a) = 0$,

• Build
$$\mathscr{T} = \left\{ (s_i, a_i), r_i + \gamma \max_{a'} \hat{Q}_n(s'_i, a') \right\}_{i \in [1, N]}$$

- Train regressor $\hat{Q}_{n+1}(s,a)$ from \mathscr{T}
- Repeat until convergence of Q

Fitteed *Q*-iteration — properties

Offline Model-free Off-policy Batch

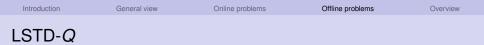
Converges under conditions on the regressor, to a neighbourhood of Q^* . Might diverge. Simple and efficient.

Least Squares Policy Iteration — the idea

Suppose
$$Q^{\pi}(s, a) = w^{T}\phi(s, a)$$

 $Q^{\pi} = r^{\pi} + \gamma P^{\pi}Q^{\pi}$ becomes:
 $w_{\pi}^{T}\Phi = r^{\pi} + \gamma P^{\pi}w_{\pi}^{T}\Phi$
And ... $w_{\pi} = [\Phi^{T}(\Phi - \gamma P^{\pi}\Phi)]^{-1}\Phi^{T}r^{\pi}$

 \ldots which can be approximated by summing over the elements of \mathscr{D}



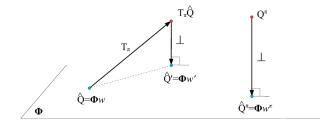
$$\begin{split} A &= \Phi^{T} \left(\Phi - \gamma P^{\pi} \Phi \right) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\phi(s_{i}, a_{i}) \left(\phi(s_{i}, a_{i}) - \gamma \phi(s'_{i}, \pi(s'_{i})) \right)^{T} \right] \\ b &= \Phi^{T} r^{\pi} \approx \frac{1}{N} \sum_{i=1}^{N} \left[\phi(s_{i}, a_{i}) r_{i} \right] \\ w_{\pi} &= A^{-1} b \\ \pi' &= Q \text{-greedy} \end{split}$$

Repeat.

Online problems

Overview

LSPI — graphical explanation



Overview

LSPI — properties

Offline Model-free Off-policy Batch

Always converges. But to what? Maximal use of \mathcal{D} . Difficulty: choose $\phi(s, a)$.

The mad hatter's casino

2 Back to Policy Iteration: Generalized PI and Actor-Critic methods

3 Online problems, the exploration vs. exploitation dilemma

- On-policy TD control: SARSA
- Off-policy control: Q-learning
- Funny comparison

Offline problems, focussing on the critic alone

- Fitted Q-iteration
- Least Squares Policy Iteration

An overview of control learning problems

Let's take a step back

So far, we can classify our algorithms / problems as:

- Model-based vs. Model-free
- On-policy vs. Off-policy
- Online vs. Episodic vs. Offline
- Incremental vs. Batch

Challenges

- Large, continuous, hybrid state and/or action spaces
- Exploration vs. exploitation
- Finite sample convergence bounds
- Lots of applications in control systems, finance, games, etc. and more and more successes
- A lot of related approaches and methods in the literature!