Statistics and learning
An introduction to Machine Learning

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

Friday 22nd November 2013
Let’s talk about Machine Learning!

Keywords?
A few examples

▶ Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
A few examples

- Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
- What price for this stock, 6 months from now?
A few examples

- Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
- What price for this stock, 6 months from now?
- Is this handwritten number a 7?
A few examples

- Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
- What price for this stock, 6 months from now?
- Is this handwritten number a 7?
- Is this e-mail a spam?

Enlarge your thesis!
A few examples

- Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
- What price for this stock, 6 months from now?
- Is this handwritten number a 7?
- Is this e-mail a spam?
- Can I cluster together different customers? words? genes?
A few examples

▶ Given 20 years of clinical data, will this patient have a second heart attack in the next 5 years?
▶ What price for this stock, 6 months from now?
▶ Is this handwritten number a 7?
▶ Is this e-mail a spam?
▶ Can I cluster together different customers? words? genes?
▶ What is the best strategy when playing Counter Strike? or “coinche”?
A (tentative) taxonomy

Different kinds of learning tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>Data: based on...</th>
<th>Target: learn...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervized</td>
<td>$T = {(x_i, y_i)}_{i=1..n}$</td>
<td>$f(x) = y$</td>
</tr>
<tr>
<td>Unsupervised</td>
<td>$T = {x_i}_{i=1..n}$</td>
<td>$x \in X_k$</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>$T = {(x_i, u_i, r_i, x'i)}{i=1..n}$</td>
<td>$\pi(x) = u / \max \sum r_t$</td>
</tr>
</tbody>
</table>
A (tentative) taxonomy

Different kinds of learning tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>Data: based on...</th>
<th>Target: learn...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervized</td>
<td>$\mathcal{T} = {(x_i, y_i)}_{i=1..n}$</td>
<td>$f(x) = y$</td>
</tr>
<tr>
<td>Unsupervised</td>
<td>$\mathcal{T} = {x_i}_{i=1..n}$</td>
<td>$x \in X_k$</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>$\mathcal{T} = {(x_i, u_i, r_i, x'i)}{i=1..n}$</td>
<td>$\pi(x) = u / \max \sum r_t$</td>
</tr>
</tbody>
</table>

Different kinds of learning contexts:

- Offline, batch, non-interactive: all samples are given at once.
- Online, incremental: samples arrive one after the other.
- Active: the algorithm asks for the next sample.
Reference textbook

Supervised Learning – vocabulary

inputs outputs
independent variables dependent variables
predictors responses
features targets
X (random variables) Y (random variables)
x_i (observation of X) y_i (observation of X)
Outputs

Nature of outputs:

- Quantitative or ordered: $y_i \in \mathbb{R}$
 \rightarrow Regression task.
- Qualitative or unordered: $y_i \in \{0; 1\}$
 \rightarrow Classification task.

In both cases: fitting a function $f(x) = y$ to the data.

Questions:

- $y_i \in \mathbb{N}$? $y_i \in \{\text{red, blue, green, yellow}\}$? $y_i \in \mathbb{R}^N$?
- What about noise; still fitting $f(x) = y$?
- What about generalization? Overfitting? Overspecialization?
Supervised learning problem

Given the value of X, make a good prediction \hat{Y} of the dependent variable Y, given a training set of samples $\mathcal{T} = \{(x_i, y_i)\}_{i=1..n}$.
The process of Supervized Learning

Focus of the next classes

An introduction to:

- Naive Bayes classification
- Support vector machines and kernel methods,
- Neural networks,
- Decision trees and Boosting,
- Markov Chain Monte Carlo (MCMC) model selection.
Examples of other, uncovered topics in supervised learning and keywords:

- Wavelets,
- Bias-variance tradeoff,
- Cross-validation,
- L1 regularization and the LASSO,
- Vapnik-Chernovenkis dimension,
- Bagging,
- Nearest-neighbour methods,
- Random forests,
- and much more!

Welcome to the wonderful world of Machine Learning!