Statistics and learning

Neural Networks

Emmanuel Rachelson, Matthieu Vignes and Nathalie Villa-Vialaneix

ISAE SupAero
$12^{\text {th }}$ December 2013

Some intuition

"Artificial Neural Networks" ?

Spoiler alert!

Keywords

- Artificial Neurons and Artifical Neural Networks (and biological ones!).
- Hidden units/layers.
- Backpropagation, delta rule, NN batch/online training.
- Influence of the number of neurons/layers.
- Pros and cons of NN.

A bit of history (and biology)

- Early XXth cent. The neuron (the biological one)!
- 40s. McCulloch (neurophysiologist) and Pitts (logician), first formal neuron. Hebb's learning rule. Turing.
- 60s. Rosenblatt's perceptron, XOR problem. Widrow and Hoff, backpropagation.
- 90s. Computational power but new algorithms (SVM, ...)
- Today. Some great successes. Deep Learning.

The biological neuron

A neuron processes the info from its synapses and outputs it to the axon.

$$
\text { Formal neuron : } z=\sigma\left(\alpha_{0}+\alpha^{T} x\right)
$$

Activation function

σ is the neuron's activation function.

The biological neural network

Each neuron processes a bit of info and passes it to its children. Overall the network processes raw information into general concepts. e.g. visual neurons.

Our focus today: can we mimic this hierarchy of neurons into a learning system that adapts to data?

From biological to artificial

Gradient-based learning applied to document recognition, Le Cun et al., IEEE, 1998.

The artificial neural network

- Network diagram
- Layer $=$ set of unconnected similar neurons
- Neuron = processing unit
- Parameters = edges weights
- Our case: single layer (easily generalizable)
- Input layer: X
- Hidden layer: $Z_{m}=\sigma\left(\alpha_{0 m}+\alpha_{m}^{T} X\right)$
- Output layer: $T_{k}=\beta_{0 k}+\beta^{T} Z$ and $Y_{k}=g_{k}(T)=f_{k}(X)$

Activation functions

Hidden

- Sigmoid $\sigma(v)=\frac{1}{1-e^{-v}}$, mostly used in supervized learning.
- Linear $\sigma(v)=v$, results in linear model.
- Heaviside $\sigma(v)=1$ if $v \geq 0,0$ otherwise, biological inspiration.
- RBF $\sigma(v)=e^{-v^{2}}$, used in unsupervized learning (SOM).

Output functions

Output: $T_{k}=\beta_{0 k}+\beta^{T} Z$

- $Z=$ (hidden) basis expansion of X.

Output: $Y_{k}=g_{k}(T)$

- Regression $g_{k}(T)=T_{k}$
- Classification $g_{k}(T)=\frac{e^{T_{k}}}{\sum_{l=1}^{K} e^{T_{k}}}($ softmax $)$

Model parameters

Parameters vector $\theta:\left\{\begin{aligned}\left\{\alpha_{0 m}, \alpha_{m} ; m=1 . . M\right\} & \rightarrow M(p+1) \text { weights, } \\ \left\{\beta_{0 k}, \beta_{k} ; k=1 . . K\right\} & \rightarrow K(M+1) \text { weights. }\end{aligned}\right.$

Trick: get rid of $\alpha_{0 m}$ and $\beta_{0 k}$ by introducing a constant " 1 " input neuron.

Error function

Regression: $R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}$
Classification: $R(\theta)=-\sum_{k=1}^{K} \sum_{i=1}^{N} y_{i k} \log f_{k}\left(x_{i}\right)$
What about noise? Overfitting?

Fitting the NN to the data

$$
R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}
$$

Given $\mathcal{T}=\left\{\left(x_{i}, y_{i}\right)\right\}$, how do you suggest we proceed to find θ ?

Fitting the NN to the data

$$
R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}
$$

(Stochastic) gradient descent :
$\min _{\theta} R(\theta)$

$$
\begin{aligned}
& \Rightarrow \text { compute } \frac{\partial R}{\partial \theta} \\
& \quad \text { then update } \theta^{(r+1)} \leftarrow \theta^{(r)}+\gamma_{r} \frac{\partial R}{\partial \theta}
\end{aligned}
$$

So let's see what $\frac{\partial R}{\partial \theta}$ looks like!

Gradients on β

Lets write $R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{N} R_{i}$.

Gradients on β

Lets write $R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{N} R_{i}$.

$$
\frac{\partial R_{i}}{\partial \beta_{k m}}=\frac{\partial\left(y_{i}-f_{k}\left(x_{i}\right)\right)^{2}}{\partial \beta_{k m}}
$$

Gradients on β

Lets write $R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{N} R_{i}$.

$$
\begin{aligned}
\frac{\partial R_{i}}{\partial \beta_{k m}} & =\frac{\partial\left(y_{i}-f_{k}\left(x_{i}\right)\right)^{2}}{\partial \beta_{k m}} \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) \frac{\partial f_{k}\left(x_{i}\right)}{\partial \beta_{k m}}
\end{aligned}
$$

Gradients on β

Lets write $R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{N} R_{i}$.

$$
\begin{aligned}
\frac{\partial R_{i}}{\partial \beta_{k m}} & =\frac{\partial\left(y_{i}-f_{k}\left(x_{i}\right)\right)^{2}}{\partial \beta_{k m}} \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) \frac{\partial f_{k}\left(x_{i}\right)}{\partial \beta_{k m}}, \text { but } f_{k}\left(x_{i}\right)=g_{k}\left(\beta_{k}^{T} z_{i}\right) \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) g_{k}^{\prime}\left(\beta_{k}^{T} z_{i}\right) \frac{\partial \beta_{k}^{T} z_{i}}{\partial \beta_{k m}}
\end{aligned}
$$

Gradients on β

Lets write $R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{N} R_{i}$.

$$
\begin{aligned}
\frac{\partial R_{i}}{\partial \beta_{k m}} & =\frac{\partial\left(y_{i}-f_{k}\left(x_{i}\right)\right)^{2}}{\partial \beta_{k m}} \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) \frac{\partial f_{k}\left(x_{i}\right)}{\partial \beta_{k m}}, \text { but } f_{k}\left(x_{i}\right)=g_{k}\left(\beta_{k}^{T} z_{i}\right) \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) g_{k}^{\prime}\left(\beta_{k}^{T} z_{i}\right) \frac{\partial \beta_{k}^{T} z_{i}}{\partial \beta_{k m}} \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) g_{k}^{\prime}\left(\beta_{k}^{T} z_{i}\right) z_{m i}
\end{aligned}
$$

Gradients on β

Lets write $R(\theta)=\sum_{k=1}^{K} \sum_{i=1}^{N}\left(y_{i k}-f_{k}\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{N} R_{i}$.

$$
\begin{aligned}
\frac{\partial R_{i}}{\partial \beta_{k m}} & =\frac{\partial\left(y_{i}-f_{k}\left(x_{i}\right)\right)^{2}}{\partial \beta_{k m}} \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) \frac{\partial f_{k}\left(x_{i}\right)}{\partial \beta_{k m}}, \text { but } f_{k}\left(x_{i}\right)=g_{k}\left(\beta_{k}^{T} z_{i}\right) \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) g_{k}^{\prime}\left(\beta_{k}^{T} z_{i}\right) \frac{\partial \beta_{k}^{T} z_{i}}{\partial \beta_{k m}} \\
& =-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) g_{k}^{\prime}\left(\beta_{k}^{T} z_{i}\right) z_{m i}
\end{aligned}
$$

So, as x_{i} goes through the network, one can compute this gradient! Let's write:

$$
\frac{\partial R_{i}}{\partial \beta_{k m}}=\delta_{k i} z_{m i}
$$

Gradients on α

Left as exercice:

$$
\frac{\partial R_{i}}{\partial \alpha_{m l}}=-\sum_{k=1}^{K} 2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) g_{k}^{\prime}\left(\beta_{k}^{T} z_{i}\right) \beta_{k m} \sigma^{\prime}\left(\alpha_{m}^{T} x_{i}\right) x_{i l}
$$

But remember: $\delta_{k i}=-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) g_{k}^{\prime}\left(\beta_{k}^{T} z_{i}\right)$, so:

$$
\frac{\partial R_{i}}{\partial \alpha_{m l}}=\left[\sigma^{\prime}\left(\alpha_{m}^{T} x_{i}\right) \sum_{k=1}^{K} \beta_{k m} \delta_{k i}\right] x_{i l}=s_{m i} x_{i l}
$$

Back-propagation, delta rule, Widrow \& Hoff 1960

 Forward pass, compute (and keep):- $\alpha_{m}^{T} x_{i}, z_{m i}$ (activation of neuron m by input x_{i})
- $\beta_{k}^{T} z_{i}, f_{k}\left(x_{i}\right)$ (activation of output k by input x_{i})

Backward pass, compute:

- $\delta_{k i}=-2\left(y_{i k}-f_{k}\left(x_{i}\right)\right) g_{k}^{\prime}\left(\beta_{k}^{T} z_{i}\right)$ (when x_{i} 's signal reaches output k)
- $s_{m i}=\sigma^{\prime}\left(\alpha_{m}^{T} x_{i}\right) \sum_{k=1}^{K} \beta_{k m} \delta_{k i}$ (error back-propagation)

Update rule:

- $\beta_{k m}^{(r+1)} \leftarrow \beta_{k m}^{(r)}-\gamma_{r} \sum_{i=1}^{N} \frac{\partial R_{i}}{\partial \beta_{k m}^{(r)}}=\beta_{k m}^{(r)}-\gamma_{r} \sum_{i=1}^{N} \delta_{k i} z_{m i}$
- $\alpha_{m l}^{(r+1)} \leftarrow \alpha_{m l}^{(r)}-\gamma_{r} \sum_{i=1}^{N} \frac{\partial R_{i}}{\partial \alpha_{m l}^{(r)}}=\alpha_{m l}^{(r)}-\gamma_{r} \sum_{i=1}^{N} s_{m i} x_{i l}$

Remark 1/3: distributed computing

$$
\alpha_{m}^{T} x_{i}, z_{m i}, \beta_{k}^{T} z_{i}, f_{k}\left(x_{i}\right), \delta_{k i}, s_{m i}
$$

Compute only neuron-based local quantities!

With limited connectivity, parallel computing.

Remark 2/3: online vs. batch

When updating θ

- Online : apply delta rule for each $\left(x_{i}, y_{i}\right)$ independently.
- Batch: cycle through the cases.

Remark 2/3: online vs. batch

When updating θ

- Online : apply delta rule for each $\left(x_{i}, y_{i}\right)$ independently.
- Batch: cycle through the cases.

Learning rate $\gamma_{r}: \theta^{(r+1)} \leftarrow \theta^{(r)}+\gamma_{r} \frac{\partial R}{\partial \theta}$

- Batch: line search in gradient descent.
- Online: stochastic approximation procedure (Robbins-Monro, 51) CV if $\sum_{r=1}^{\infty} \gamma_{r}=\infty, \sum_{r=1}^{\infty} \gamma_{r}^{2}<\infty$

Remark 3/3: other optimization procedures

```
min
```

In practice, back-propagation is slow.

- 2nd order methods too complex (size of Hessian matrix)
- Conjugate gradients, Levenberg-Marquadt algorithm.

ANNs in practice: initializing weights

- Good practice: initialize randomly close to zero but $\neq 0$.
- Reason: close to zero, the sigmoid is almost linear. Training brings the differentiation. But zero weights would yield zero gradients.
- In practice: too large initial weights perform poorly.
- Good range: $[-0.7,0.7]$ if normalized inputs.

ANNs in practice: avoiding overfitting

What do you think?

ANNs in practice: avoiding overfitting

- early stopping rule (using validation set).
- cross validation.
- regularization: $R(\theta)+\lambda J(\theta)=R(\theta)+\lambda\left[\sum_{k m} \beta_{k m}^{2}+\sum_{m l} \alpha_{m l}^{2}\right]$

Find the good λ by cross-validation.
$J(\theta)$ is differentiable: change the delta rule accordingly.

ANNs in practice: scaling the inputs

Always scale the inputs!
It makes uniform random weights relevant.

ANNs in practice: number of neurons/layers

- Too few = bad, not expressive enough.
- Too many = risk overfitting Use regularization (too many + regularization $=$ generally good). Slower convergence.

Good practice in many cases:

- Single layer
- $[5,100]$ neurons
- Then refine the activation functions (specialized neurons) and the network's architecture.

ANNs in practice: convexity of $R(\theta)$

$R(\theta)$ has no reason to be convex!

- Try random initializations and compare.
- Mixtures of expert ANNs (see next class on Boosting).

Why should you use ANNs?

- Artificial Neurons and Artifical Neural Networks.
- Hidden units/layers.
- Backpropagation, delta rule, NN batch/online training.
- Good practices.

Pros:

- Intuitive, explainable process.
- Can approximate any function with any precision.
- Wide range of implementations available.

Cons:

- Non explainable results (or weights, except in specific cases like fuzzy NN).
- Slow training.
- No margin guarantees (further reading: Bayesian NN, regularization in NN).
- Sensitivity to noise and overfitting.

Yet widely used in control, identification, finance, etc.

