Statistics and learning
Learning Decision Trees and an Introduction to Boosting

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

Friday 10th January 2014
Keywords

- Decision trees
- Divide and Conquer
- Impurity measure, Gini index, Information gain
- Pruning and overfitting
- CART and C4.5

Contents of this class:

- The general idea of learning decision trees
 - Regression trees
 - Classification trees
 - Boosting and trees
Introductory example

<table>
<thead>
<tr>
<th>Alt</th>
<th>Bar</th>
<th>F/S</th>
<th>Hun</th>
<th>Pat</th>
<th>Pri</th>
<th>Rai</th>
<th>Res</th>
<th>Typ</th>
<th>Dur</th>
<th>Wai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.38</td>
<td>$$ $$</td>
<td>N</td>
<td>Y</td>
<td>French</td>
<td>8</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.83</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Thai</td>
<td>41</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>0.12</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Burger</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>0.75</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Thai</td>
<td>12</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>0.91</td>
<td>$$ $$</td>
<td>N</td>
<td>Y</td>
<td>French</td>
<td>75</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>0.34</td>
<td>$$</td>
<td>Y</td>
<td>Y</td>
<td>Italian</td>
<td>8</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>0.09</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Burger</td>
<td>7</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.15</td>
<td>$$</td>
<td>Y</td>
<td>Y</td>
<td>Thai</td>
<td>10</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>0.84</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Burger</td>
<td>80</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>0.78</td>
<td>$$ $$</td>
<td>N</td>
<td>Y</td>
<td>Italian</td>
<td>25</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0.05</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Thai</td>
<td>3</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>0.89</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Burger</td>
<td>38</td>
<td>Y</td>
</tr>
</tbody>
</table>

Please describe this dataset *without* any calculation.
Introductory example

<table>
<thead>
<tr>
<th></th>
<th>Alt</th>
<th>Bar</th>
<th>F/S</th>
<th>Hun</th>
<th>Pat</th>
<th>Pri</th>
<th>Rai</th>
<th>Res</th>
<th>Typ</th>
<th>Dur</th>
<th>Wai</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.38</td>
<td>$$$$</td>
<td>N</td>
<td>Y</td>
<td>French</td>
<td>8</td>
<td>Y</td>
</tr>
<tr>
<td>(x_2)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.83</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Thai</td>
<td>41</td>
<td>N</td>
</tr>
<tr>
<td>(x_3)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>0.12</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Burger</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>(x_4)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>0.75</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Thai</td>
<td>12</td>
<td>Y</td>
</tr>
<tr>
<td>(x_5)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>0.91</td>
<td>$$$$</td>
<td>N</td>
<td>Y</td>
<td>French</td>
<td>75</td>
<td>N</td>
</tr>
<tr>
<td>(x_6)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>0.34</td>
<td>$$$</td>
<td>Y</td>
<td>Y</td>
<td>Italian</td>
<td>8</td>
<td>Y</td>
</tr>
<tr>
<td>(x_7)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>0.09</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Burger</td>
<td>7</td>
<td>N</td>
</tr>
<tr>
<td>(x_8)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.15</td>
<td>$$$</td>
<td>Y</td>
<td>Y</td>
<td>Thai</td>
<td>10</td>
<td>Y</td>
</tr>
<tr>
<td>(x_9)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>0.84</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Burger</td>
<td>80</td>
<td>N</td>
</tr>
<tr>
<td>(x_{10})</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>0.78</td>
<td>$$$$</td>
<td>N</td>
<td>Y</td>
<td>Italian</td>
<td>25</td>
<td>N</td>
</tr>
<tr>
<td>(x_{11})</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0.05</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Thai</td>
<td>3</td>
<td>N</td>
</tr>
<tr>
<td>(x_{12})</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>0.89</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Burger</td>
<td>38</td>
<td>Y</td>
</tr>
</tbody>
</table>

Why is Pat a better indicator than Typ?
Deciding to wait... or not
Decision trees

Ingredients:

- **Nodes**
 Each node contains a *test* on the features which *partitions* the data.

- **Edges**
 The outcome of a node’s test leads to one of its child edges.

- **Leaves**
 A terminal node, or leaf, holds a *decision value* for the output variable.
Decision trees

Ingredients:

- **Nodes**
 Each node contains a *test* on the features which *partitions* the data.

- **Edges**
 The outcome of a node’s test leads to one of its child edges.

- **Leaves**
 A terminal node, or leaf, holds a *decision value* for the output variable.

We will look at binary trees (⇒ binary tests) and single variable tests.

 - Binary attribute: node = attribute
 - Continuous attribute: node = (attribute, threshold)
Decision trees

Ingredients:

- **Nodes**
 Each node contains a *test* on the features which *partitions* the data.

- **Edges**
 The outcome of a node’s test leads to one of its child edges.

- **Leaves**
 A terminal node, or leaf, holds a *decision value* for the output variable.

We will look at binary trees (⇒ binary tests) and single variable tests.

- Binary attribute: node = attribute
- Continuous attribute: node = (attribute, threshold)

How does one build a good decision tree?

For a regression problem?
For a classification problem?
A little more formally

A tree with M leaves describes a covering set of M hypercubes R_m in X. Each R_m hold a decision value \hat{y}_m.

$$\hat{f}(x) = \sum_{m=1}^{M} \hat{y}_m I_{R_m}(x)$$

Notation:

$$N_m = |x_i \in R_m| = \sum_{i=1}^{q} I_{R_m}(x_i)$$
The general idea of learning decision trees

The general idea: divide and conquer

Example Set T, attributes x_1, \ldots, x_p

FormTree(T)

1. Find best split (j, s) over T // Which criterion?

2. If $(j, s) = \emptyset$,
 - node = FormLeaf(T) // Which value for the leaf?

3. Else
 - node = (j, s)
 - split T according to (j, s) into (T_1, T_2)
 - append FormTree(T_1) to node // Recursive call
 - append FormTree(T_2) to node

4. Return node
The general idea: divide and conquer

Example Set T, attributes x_1, \ldots, x_p

FormTree(T)

1. Find best split (j, s) over T // Which criterion?
2. If $(j, s) = \emptyset$,
 ▶ node = FormLeaf(T) // Which value for the leaf?
3. Else
 ▶ node = (j, s)
 ▶ split T according to (j, s) into (T_1, T_2)
 ▶ append FormTree(T_1) to node // Recursive call
 ▶ append FormTree(T_2) to node
4. Return node

Remark

This is a greedy algorithm, performing local search.
The R point of view

Two packages for tree-based methods: tree and rpart.
Regression trees – criterion

We want to fit a tree to the data \(\{(x_i, y_i)\}_{i=1..q}\) with \(y_i \in \mathbb{R}\).

Criterion?
Regression trees – criterion

We want to fit a tree to the data \(\{(x_i, y_i)\}_{i=1..q} \) with \(y_i \in \mathbb{R} \).

Criterion? Sum of squares:
\[
\sum_{i=1}^{q} \left(y_i - \hat{f}(x_i) \right)^2
\]
Regression trees – criterion

We want to fit a tree to the data \(\{(x_i, y_i)\}_{i=1}^q \) with \(y_i \in \mathbb{R} \).

Criterion? Sum of squares: \(\sum_{i=1}^{q} \left(y_i - \hat{f}(x_i) \right)^2 \)

Inside region \(R_m \), best \(\hat{y}_m \)?
Regression trees – criterion

We want to fit a tree to the data \(\{(x_i, y_i)\}_{i=1..q} \) with \(y_i \in \mathbb{R} \).

Criterion? Sum of squares:
\[
\sum_{i=1}^{q} \left(y_i - \hat{f}(x_i) \right)^2
\]

Inside region \(R_m \), best \(\hat{y}_m \)?
\[
\hat{y}_m = \frac{1}{N_m} \sum_{x_i \in R_m} y_i = \bar{Y}_{R_m}
\]

Node impurity measure:
\[
Q_m = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{y}_m)^2
\]
Regression trees – criterion

Best partition: hard to find. But locally, best split?

\[
\arg\min_{j,s} C(j,s) = \min \left(\sum_{x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1}(j,s))^2 + \sum_{x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2}(j,s))^2 \right)
\]
Regression trees – criterion

Best partition: hard to find. But locally, best split?

Solve \(\arg\min_{j,s} C(j, s) \)

\[
C(j, s) = \left[\min_{\hat{y}_1} \sum_{x_i \in R_1(j,s)} (y_i - \hat{y}_1)^2 + \min_{\hat{y}_2} \sum_{x_i \in R_2(j,s)} (y_i - \hat{y}_2)^2 \right]
\]

\[
= \left[\sum_{x_i \in R_1(j,s)} (y_i - \bar{Y}_{R_1}(j,s))^2 + \sum_{x_i \in R_2(j,s)} (y_i - \bar{Y}_{R_2}(j,s))^2 \right]
\]

\[
= N_1 Q_1 + N_2 Q_2
\]
Overgrowing the tree?

- Too small: rough average.
- Too large: overfitting.

<table>
<thead>
<tr>
<th></th>
<th>Alt</th>
<th>Bar</th>
<th>F/S</th>
<th>Hun</th>
<th>Pat</th>
<th>Pri</th>
<th>Rai</th>
<th>Res</th>
<th>Typ</th>
<th>Dur</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.38</td>
<td>$$$</td>
<td>N</td>
<td>Y</td>
<td>French</td>
<td>8</td>
</tr>
<tr>
<td>x_2</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.83</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Thai</td>
<td>41</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>0.12</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Burger</td>
<td>4</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>0.75</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Thai</td>
<td>12</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>0.91</td>
<td>$$$</td>
<td>N</td>
<td>Y</td>
<td>French</td>
<td>75</td>
</tr>
<tr>
<td>x_6</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>0.34</td>
<td>$$</td>
<td>Y</td>
<td>Y</td>
<td>Italian</td>
<td>8</td>
</tr>
<tr>
<td>x_7</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>0.09</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Burger</td>
<td>7</td>
</tr>
<tr>
<td>x_8</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>0.15</td>
<td>$$</td>
<td>Y</td>
<td>Y</td>
<td>Thai</td>
<td>10</td>
</tr>
<tr>
<td>x_9</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>0.84</td>
<td>$</td>
<td>Y</td>
<td>N</td>
<td>Burger</td>
<td>80</td>
</tr>
<tr>
<td>x_{10}</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>0.78</td>
<td>$$$</td>
<td>N</td>
<td>Y</td>
<td>Italian</td>
<td>25</td>
</tr>
<tr>
<td>x_{11}</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0.05</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Thai</td>
<td>3</td>
</tr>
<tr>
<td>x_{12}</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>0.89</td>
<td>$</td>
<td>N</td>
<td>N</td>
<td>Burger</td>
<td>38</td>
</tr>
</tbody>
</table>
Overgrowing the tree?

Stopping criterion?
- Stop if $\min_{j,s} C(j, s) > \kappa$? Not good because a good split might be hidden in deeper nodes.
- Stop if $N_m < n$? Good to avoid overspecialization.
- Prune the tree after growing. *cost-complexity pruning*.

Cost-complexity criterion:

$$C_\alpha = \sum_{m=1}^{M} N_m Q_m + \alpha M$$

Once a tree is grown, prune it to minimize C_α.

- Each α corresponds to a unique cost-complexity optimal tree.
- Pruning method: *Weakest link pruning*, left to your curiosity.
- Best α? Through cross-validation.
Regression trees in a nutshell

- Constant values on the leaves.
- Growing phase: greedy splits that minimize the squared-error impurity measure.
- Pruning phase: Weakest-link pruning that minimize the cost-complexity criterion.
Regression trees in a nutshell

- Constant values on the leaves.
- Growing phase: greedy splits that minimize the squared-error impurity measure.
- Pruning phase: Weakest-link pruning that minimize the cost-complexity criterion.

Further reading on regression trees:

- MARS: Multivariate Adaptive Regression Splines.
 Linear functions on the leaves.
- PRIM: Patient Rule Induction Method.
 Focuses on extremas rather than averages.
A bit of R before classification tasks

Let’s load the “Optical Recognition of Handwritten Digits” database.

```r
> optical <- read.csv("optdigits.tra", sep="","", header=FALSE)
> colnames(optical)[65] <- "class"
```
Suppose $y_i \in \{True; False\}$. Let’s fit a tree to $\{(x_i, y_i)\}_{i=1..q}$.

Best \hat{y}_m in node m?
Classification trees

Suppose $y_i \in \{True; False\}$. Let’s fit a tree to $\{(x_i, y_i)\}_{i=1..q}$.

Best \hat{y}_m in node m?

Proportion of class k observations in node m:

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)$$

Class of node m: $\hat{y}_m = \arg\max_k \hat{p}_{mk}$
Classification trees

Node impurity measure?

Misclassification error

\[Q_m = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i \neq \hat{y}_m) = 1 - \hat{p}_m \hat{y}_m \]

Gini index (CART)

\[Q_m = \sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) \]

Information or deviance (C4.5)

\[Q_m = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk} \]
Classification trees

Node impurity measure?

- Misclassification error
 \[Q_m = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i \neq \hat{y}_m) = 1 - \hat{p}_m \hat{y}_m \]

- Gini index (CART)
 \[Q_m = \sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) \]

- Information or deviance (C4.5)
 \[Q_m = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk} \]

Splitting criterion? Minimize \(N_1 Q_1 + N_2 Q_2 \)
Classification trees

Node impurity measure?

Misclassification error

\[Q_m = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i \neq \hat{y}_m) = 1 - \hat{p}_m \hat{y}_m \]

Gini index (CART)

\[Q_m = \sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}) \]

Information or deviance (C4.5)

\[Q_m = - \sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk} \]

Splitting criterion? Minimize \(N_1 Q_1 + N_2 Q_2 \)

Pruning? Cost-complexity (often using the misclassification error) criterion.

\[C_\alpha = \sum_{m=1}^M N_m Q_m + \alpha M \]
Classification trees in a nutshell

- Class values on the leaves.
- Growing phase: greedy splits that maximize the Gini index reduction (CART) or the information gain (C4.5)
- Pruning phase: Weakest-link pruning that minimize the cost-complexity criterion.

Further reading on classification trees:
- EC4.5 and YaDT: Implementation improvements for C4.5
- C5.0: C4.5 with additional features.
- Loss matrix.
- Handling missing values.
Classification trees in a nutshell

- Class values on the leaves.
- Growing phase: greedy splits that maximize the Gini index reduction (CART) or the information gain (C4.5)
- Pruning phase: Weakest-link pruning that minimize the cost-complexity criterion.

Further reading on classification trees:
- EC4.5 and YaDT: Implementation improvements for C4.5
- C5.0: C4.5 with additional features.
- Loss matrix.
- Handling missing values.
A bit of R

```r
> help(tree)
> optical.tree <- tree(factor(class) ~ ., optical, split="deviance")
> optical.tree.gini <- tree(factor(class) ~ ., optical, split="gini")
> plot(optical.tree); text(optical.tree)
> help(prune.tree)
> optical.tree.pruned <- prune.tree(optical.tree, method="misclass", k=10)
> help(cv.tree)
> optical.tree.cv <- cv.tree(optical.tree, , prune.misclass)
> plot(optical.tree.cv)
```
Why should you use Decision Trees?

Advantages

- Easy to read and interpret.
- Learning the tree has complexity linear in p.
- Can be rather efficient on well pre-processed data (in conjunction with PCA for instance).

However

- No margin or performance guarantees.
- Lack of smoothness in the regression case.
- Strong assumption that the data can fit in hypercubes.
- Strong sensitivity to the data set.

But...

- Can be compensated by ensemble methods such as Boosting or Bagging.
- Very efficient extension with Random Forests
Boosting and trees

Motivation

AdaBoost with trees is the best off-the-shelf classifier in the world. (Breiman 1998)

Not so true today but still accurate enough.
What is Boosting?

Key idea

Boosting is a procedure that combines several “weak” classifiers into a powerful “committee.”

Committee-based or ensemble methods literature in Machine Learning.

Warning

For this part, we take a very practical approach. For a more thorough and rigorous presentation, see (for instance) the reference below.

The main picture

Weak classifiers

$h(x) = y$ is said to be a weak (or a PAC-weak) classifier if it performs better than a random guessing on the training data.

AdaBoost

AdaBoost constructs a strong classifier as a linear combination of weak classifiers $h_t(x)$:

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$
The AdaBoost algorithm

Given \(\{(x_i, y_i)\}, x_i \in X, y_i \in \{-1; 1\} \).
The AdaBoost algorithm

Given \(\{(x_i, y_i)\}, x_i \in X, y_i \in \{-1; 1\} \).
Initialize weights \(D_1(i) = 1/q \)
The AdaBoost algorithm

Given \(\{(x_i, y_i)\}, x_i \in X, y_i \in \{-1; 1\} \).

Initialize weights \(D_1(i) = 1/q \)

For \(t = 1 \) to \(T \):

- Find \(h_t = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{q} D_t(i)I(y_i \neq h(x_i)) \)

Where \(Z_t \) is a normalisation factor.

Return the classifier \(H(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(x)) \)
The AdaBoost algorithm

Given \(\{(x_i, y_i)\} \), \(x_i \in X, y_i \in \{-1, 1\} \).

Initialize weights \(D_1(i) = 1/\calq \)

For \(t = 1 \) to \(T \):

- Find \(h_t = \arg\min_{h \in \calh} \sum_{i=1}^{\calq} D_t(i)I(y_i \neq h(x_i)) \)

- If \(\epsilon_t = \sum_{i=1}^{\calq} D_t(i)I(y_i \neq h_t(x_i)) \geq 1/2 \) then stop
The AdaBoost algorithm

Given \{ (x_i, y_i) \} , x_i \in X, y_i \in \{-1; 1\}.

Initialize weights \(D_1(i) = 1/q \)

For \(t = 1 \) to \(T \):

\begin{itemize}
 \item Find \(h_t = \arg\min_{h \in H} \sum_{i=1}^{q} D_t(i) I(y_i \neq h(x_i)) \)
 \item If \(\epsilon_t = \sum_{i=1}^{q} D_t(i) I(y_i \neq h_t(x_i)) \geq 1/2 \) then stop
 \item Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \)
\end{itemize}

Where \(Z_t \) is a normalisation factor.

Return the classifier \(H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \)
The AdaBoost algorithm

Given \(\{(x_i, y_i)\} \), \(x_i \in X, y_i \in \{-1; 1\} \).

Initialize weights \(D_1(i) = 1/q \)

For \(t = 1 \) to \(T \):

- Find \(h_t = \text{argmin}_{h \in H} \sum_{i=1}^{q} D_t(i) I(y_i \neq h(x_i)) \)

- If \(\epsilon_t = \sum_{i=1}^{q} D_t(i) I(y_i \neq h_t(x_i)) \geq 1/2 \) then stop

- Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1-\epsilon_t}{\epsilon_t} \right) \)

- Update

\[
D_{t+1}(i) = \frac{D_t(i)e^{-\alpha_t y_i h_t(x_i)}}{Z_t}
\]

Where \(Z_t \) is a normalisation factor.
The AdaBoost algorithm

Given \(\{(x_i, y_i)\}, x_i \in X, y_i \in \{-1; 1\} \).

Initialize weights \(D_1(i) = 1/q \)

For \(t = 1 \) to \(T \):

- Find \(h_t = \arg\min_{h \in H} \sum_{i=1}^{q} D_t(i) I(y_i \neq h(x_i)) \)

- If \(\epsilon_t = \sum_{i=1}^{q} D_t(i) I(y_i \neq h_t(x_i)) \geq 1/2 \) then stop

- Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1-\epsilon_t}{\epsilon_t} \right) \)

- Update

\[
D_{t+1}(i) = \frac{D_t(i) e^{-\alpha_t y_i h_t(x_i)}}{Z_t}
\]

Where \(Z_t \) is a normalisation factor.

Return the classifier

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]
Iterative reweighting

\[
D_{t+1}(i) = \frac{D_t(i) e^{-\alpha t y_i h_t(x_i)}}{Z_t}
\]

- Increase the weight of incorrectly classified samples
- Decrease the weight of correctly classified samples
- Memory effect: a sample misclassified several times has a large \(D(i) \)
- \(h_t \) focusses on samples that were misclassified by \(h_0, \ldots, h_{t-1} \)
Properties

\[
\frac{1}{q} \sum_{i=1}^{q} I(H(x_i) \neq y_i) \leq \prod_{t=1}^{T} Z_t
\]

- To minimize training error at each step \(t \), minimize this upper bound.
 - This is where \(\alpha_t = \frac{1}{2} \log \left(\frac{1-\epsilon_t}{\epsilon_t} \right) \) comes from.
- This is equivalent to maximizing the margin!
AdaBoost is not Boosting

Many variants of AdaBoost:

- Binary classification AdaBoost.M1, AdaBoost.M2, . . . ,
- Multiclass AdaBoost.MH,
- Regression AdaBoost.R,
- Online, . . .

And other Boosting algorithms.
Why should you use Boosting?

AdaBoost is a meta-algorithm: it “boosts” a weak classifier algorithm into a committee that is a strong classifier.

- AdaBoost maximizes margin
- Very simple to implement
- Can be seen as a feature selection algorithm
- In practice, AdaBoost often avoids overfitting.
AdaBoost with trees

Your turn to play: will you be able to implement AdaBoost with trees in R?