Statistics and learning Statistical estimation

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

Wednesday 18th September 2013

イロト イポト イヨト イヨト

€ 990

1 / 17

2013

How to retrieve 'lecture' support & practical sessions

LMS @ ISAE

or

My website

(clickable links)

200

3

Crux of the estimation

Population, sample and statistics.

9990

イロト イボト イヨト イヨト

Crux of the estimation

- ► Population, sample and statistics.
- Concept of estimator of a paramater.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Crux of the estimation

- ► Population, sample and statistics.
- Concept of estimator of a paramater.
- ► Bias, comparison of estimators, Maximum Likelihood Estimator.

∃ ► < ∃ ►</p>

Crux of the estimation

- Population, sample and statistics.
- Concept of estimator of a paramater.
- ► Bias, comparison of estimators, Maximum Likelihood Estimator.
- ► Sufficient statistics, quantiles.

Crux of the estimation

- Population, sample and statistics.
- Concept of estimator of a paramater.
- ► Bias, comparison of estimators, Maximum Likelihood Estimator.
- Sufficient statistics, quantiles.
- Interval estimation.(2)

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Steps in estimation procedure:

 Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,
- ► a sample with $n \le N$ independent observations $(x_1 \dots x_n)$ is extracted,

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,
- ▶ a sample with $n \le N$ independent observations $(x_1 \dots x_n)$ is extracted,
- ► θ is estimated through a **statistic** (=function of X_i 's): $\hat{\theta} = T(X_1 \dots X_n).$

イロト 不得 トイヨト イヨト 二日

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,
- ▶ a sample with $n \le N$ independent observations $(x_1 \dots x_n)$ is extracted,
- ► θ is estimated through a **statistic** (=function of X_i 's): $\hat{\theta} = T(X_1 \dots X_n).$

Note: independence is true only if drawing is made with replacement. Without replacement, the approximation is ok if n << N.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,
- ▶ a sample with $n \le N$ independent observations $(x_1 \dots x_n)$ is extracted,
- ► θ is estimated through a **statistic** (=function of X_i 's): $\hat{\theta} = T(X_1 \dots X_n).$

Note: independence is true only if drawing is made with replacement. Without replacement, the approximation is ok if n << N.

Mean estimation(2)

Estimate the average life span of a bulb...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Point estimation of a parameter

Recall

n realisations of random variables iid $(X_1 \dots X_n)$ are available. Some parameters can be of interest. Direct computation not feasible so estimation needed. **Objective** here: tools and maths grounds for estimation.

Point estimation of a parameter

Recall

n realisations of random variables iid $(X_1 \dots X_n)$ are available. Some parameters can be of interest. Direct computation not feasible so estimation needed. **Objective** here: tools and maths grounds for estimation.

Definitions

- Statistical model: definition of a probability distribution P_θ (joint if discrete rv and density if continuous rv), with θ is a (p-vector of) unknown parameter(s).
- ▶ Statistic: $T : \mathbb{R}^n \to \mathbb{R}^{(p)}, (x_i)_{i=1...n} \mapsto T(x_1 \dots x_n)$. Examples: empirical mean or variance (known/unknown mean).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Estimator, bias, comparison

Exercice

Lift can bear $1,000 \, kg$. User weight $\sim \mathcal{N}(75,16^2)$.

- Max. number of people allowed in it if $P(\text{lift won't take off}) = 10^{-6}$?
- Lift manufacturer allows 11 people inside. P(overweight) = ??

Estimator, bias, comparison

Exercice

Lift can bear $1,000\,kg.$ User weight $\sim \mathcal{N}(75,16^2).$

- Max. number of people allowed in it if $P(\text{lift won't take off}) = 10^{-6}$?
- Lift manufacturer allows 11 people inside. P(overweight) = ??

Definitions

- Estimator of an unknown parameter θ: a statistic denoted θ

 (observed values are approximations of θ). The bias associated to θ
 is E[θ̂] θ (if = 0, θ̂ is said to be unbiased). Ex: (exercices) (i) the
 empirical mean is an unbiaised estimator for the (theoretical) mean.
 (ii) S²_n := Σⁿ_{i=1} (X_i X̄)²/n
 is a biased estimator for σ².
- ► $\hat{\theta}$ is asymptotically unbiased if $\lim_{n\to\infty} E[\hat{\theta}] = \theta$.
- ▶ $\hat{\theta}_1$ and $\hat{\theta}_2$: 2 unbiased estimator for θ ; $\hat{\theta}_1$ is better than $\hat{\theta}_2$ if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$; in practice, $\hat{\theta}_1$ converges faster than $\hat{\theta}_2$.

Application break

Estimating the duration of a traffic light

 $\theta > 0$ is the actual duration of a traffic light. Unknown. We observe a sample $t_1 \dots t_n$, where t_i is the waiting time of driver i.

- 1. What is a good modelling for T_i 's ? Density ? Mean and variance ?
- 2. If $\overline{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$, what is $E[\overline{T}]$? $var(\overline{T})$? Can you use \overline{T} to build an unbiased estimator of θ ? Establish its probability convergence.
- 3. Let $M_n = \sup_i T_i$. Compute the cumulative probability function of M_n ? Density? Mean and variance? Plot the cpf for n = 3, n = 30 and interpret. Use M_n to build an unbiased probability-convergent estimator of θ .
- 4. Compare the variances of both estimators. Which one would you use to estimate θ ?
- 5. Numerical application for n = 3 and $(t_1, t_2, t_3) = (2, 24, 13)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Convergence of estimators

Def: $\hat{\theta}$ converges in probability towards θ if $\forall \epsilon > 0$, $P(|\hat{\theta} - \theta| < \epsilon) \rightarrow_n 1$.

<ロト < 団ト < 巨ト < 巨ト = 三 の < 0</p>

Convergence of estimators

Def: $\hat{\theta}$ converges in probability towards θ if $\forall \epsilon > 0$, $P(|\hat{\theta} - \theta| < \epsilon) \rightarrow_n 1$.

Theorem

An (asymptotically) unbiased estimator s.t. $\lim_{n} Var(\hat{\theta}) = 0$ converges in probability towards θ .

イロト 不得下 イヨト イヨト

Convergence of estimators

Def: $\hat{\theta}$ converges in probability towards θ if $\forall \epsilon > 0$, $P(|\hat{\theta} - \theta| < \epsilon) \rightarrow_n 1$.

Theorem

An (asymptotically) unbiased estimator s.t. $\lim_{n} Var(\hat{\theta}) = 0$ converges in probability towards θ .

Theorem

An unbiased estimator $\hat{\theta}$ with the following technical regularity hypotheses (H1-H5) verifies $Var(\hat{\theta}) > V_n(\theta)$, with the Cramer-Rao bound $V_n(\theta) := (-E[\frac{\partial^2 \log f(X_1...X_n;\theta)}{\partial \theta^2}])^{-1}$ (inverse of Fisher information). (H1) the support $D := \{X, f(x; \theta) > 0\}$ does not depend upon θ . (H2) θ belongs to an open interval I. (H3) on $I \times D$, $\frac{\partial f}{\partial \theta}$ and $\frac{\partial^2 f}{\partial \theta^2}$ exist and are integrable over x. (H4) $\theta \mapsto \int_A f(x; \theta) dx$ has a second order derivative $(x \in I, A \in B(\mathbb{R}))$ (H5) $\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^2$ is integrable.

E. Rachelson & M. Vignes (ISAE)

Application to the estimation of a $|\mathcal{N}|$

Definition

An unbiased estimator $\hat{\sigma}$ for θ is **efficient** if its variance is equal to the Cramer-Rao bound. It is the best possible among unbiased estimators.

Application to the estimation of a $|\mathcal{N}|$

Definition

An unbiased estimator $\hat{\sigma}$ for θ is **efficient** if its variance is equal to the Cramer-Rao bound. It is the best possible among unbiased estimators.

Exercice

Let $(X_i)_{i=1...n}$ iid rv $\sim \mathcal{N}(m, \sigma^2)$. $Y_i := |X_i - m|$ is observed.

- ▶ Density of Y_i ? Compute $E[Y_i]$? Interpretation compared to σ ?
- Let $\hat{\sigma} := \sum_i a_i Y_i$. If we want $\hat{\sigma}$ to be unbiased, give a constraint on (a_i) 's. Under this constraint, show that $Var(\hat{\sigma})$ is minimum iif all a_i are equal. In this case, give the variance.
- Compare the Cramer-Rao bound to the above variance. Is the built estimator efficient ?

Likelihood function

Definition

The likelihood of a rv $\mathbf{X} = (X_1 \dots X_n)$ is the function L:

$$\begin{array}{rcl} L: \mathbb{R}^n \times \Theta \longrightarrow & \mathbb{R}^+ \\ (x, \theta) \longmapsto & L(x; \theta) := \left\{ \begin{array}{l} f(x; \theta), \mbox{ the density of } \mathbf{X} \\ \mbox{ or } \\ P_\theta(X_1 = x_1 \dots X_n = x_n), \mbox{ if } \mathbf{X} \mbox{ discrete} \end{array} \right. \end{array}$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Likelihood function

Definition

The likelihood of a rv $\mathbf{X} = (X_1 \dots X_n)$ is the function L:

$$\begin{array}{cccc} L: \mathbb{R}^n \times \Theta \longrightarrow & \mathbb{R}^+ \\ (x, \theta) \longmapsto & L(x; \theta) := \left\{ \begin{array}{l} f(x; \theta), \mbox{ the density of } \mathbf{X} \\ \mbox{ or } \\ P_{\theta}(X_1 = x_1 \dots X_n = x_n), \mbox{ if } \mathbf{X} \mbox{ discrete} \end{array} \right. \end{array}$$

Examples

► X_i Gaussian iid rv:

$$L(x;\theta) = \prod_{i} f(x_{i};\theta) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{n} \exp\left[-\frac{1}{2}\sum_{i} \left(\frac{x_{i}-m}{\sigma}\right)^{2}\right]$$

► X_i Bernouilli iid rv: $L(x; \theta) = p^{\sum x_i} (1-p)^{n-\sum x_i}$

Definition

$$\hat{\theta}_{MLE} := \arg \max_{\theta \in \Theta} (\log) L(x_1 \dots x_n; \theta)$$

Interpretation: $\hat{\theta}_{MLE}$ is the parameter value that gives maximum probability to the observed values or random variables...

Definition

$$\hat{\theta}_{MLE} := \arg \max_{\theta \in \Theta} (\log) L(x_1 \dots x_n; \theta)$$

Interpretation: $\hat{\theta}_{MLE}$ is the parameter value that gives maximum probability to the observed values or random variables...

Remark: the EMV does not always exists (possible alternatives: least square or moments). When it exists, it is not necessarily unique, can be biased or not efficient. However...

Definition

$$\hat{\theta}_{MLE} := \arg \max_{\theta \in \Theta} (\log) L(x_1 \dots x_n; \theta)$$

Interpretation: $\hat{\theta}_{MLE}$ is the parameter value that gives maximum probability to the observed values or random variables...

Remark: the EMV does not always exists (possible alternatives: least square or moments). When it exists, it is not necessarily unique, can be biased or not efficient. However...

Theorem

- $\hat{\theta}_{MLE}$ is asymptotically unbiased and efficient.
- $\frac{\hat{\theta}_{MLE}-\theta}{V_n(\theta)} \longrightarrow_n \mathcal{N}(0,1)$, where $V_n(\theta)$ is the Cramer-Rao bound.
- $\hat{\theta}_{MLE}$ converges to θ in squared mean.

Definition

$$\hat{\theta}_{MLE} := \arg \max_{\theta \in \Theta} (\log) L(x_1 \dots x_n; \theta)$$

Interpretation: $\hat{\theta}_{MLE}$ is the parameter value that gives maximum probability to the observed values or random variables...

Remark: the EMV does not always exists (possible alternatives: least square or moments). When it exists, it is not necessarily unique, can be biased or not efficient. However...

Theorem

- $\hat{\theta}_{MLE}$ is asymptotically unbiased and efficient.
- $\frac{\hat{\theta}_{MLE}-\theta}{V_n(\theta)} \longrightarrow_n \mathcal{N}(0,1)$, where $V_n(\theta)$ is the Cramer-Rao bound.
- $\hat{\theta}_{MLE}$ converges to θ in squared mean. 'MLE for a proportion' exercice ? Mean and variance estimation of $\mathcal{N}(\mu, \sigma)$.

E. Rachelson & M. Vignes (ISAE)

Sufficient statistic

Remark/definition

Any realisation (x_i) of a rv X, unknown distribution but parameterised by θ , from a sample contains information on θ . If the statistic summarises all possible information from the sample, it is **sufficient**. In other words "no other statistic which can be calculated from the same sample provides any additional information as to the value of the parameter" (Fisher 1922) In mathematical terms: $P(X = x | T = t, \theta) = P(X = x | T = t)$

Sufficient statistic

Remark/definition

Any realisation (x_i) of a rv X, unknown distribution but parameterised by θ , from a sample contains information on θ . If the statistic summarises all possible information from the sample, it is **sufficient**. In other words "no other statistic which can be calculated from the same sample provides any additional information as to the value of the parameter" (Fisher 1922) In mathematical terms: $P(X = x | T = t, \theta) = P(X = x | T = t)$

Theorem (Fisher-Neyman)

T(X) is sufficient if there exist 2 functions g and h s.t. $L(x;\theta)=g(t;\theta)h(x)$

Implication: in the context of MLE, 2 samples yielding the same value for T yield the same inferences about θ . (dep. on θ is only in conjunction with T).

Sufficient statistic

An example

Sufficiency of an estimator of a proportion

Quality control in a factory: n items drawn with replacement to estimate p the proportion of faulty items. $X_i = 1$ if item i is cracked, 0 otherwise. Show that the 'classical' estimator for p, $\frac{1}{n}\sum_{i=1}^{n} X_i$ is sufficient.

Quantiles

Definition

The cumulative distribution function $F(F(x) = \int_{-\infty}^{x} f(t)dt$, with f density of X) is a non-decreasing function $\mathbb{R} \to [0; 1]$. Its inverse F^{-1} is called the quantile function. $\forall \beta \in]0; 1[$, the β -quantile is defined by $F^{-1}(\beta)$.

Quantiles

Definition

The cumulative distribution function $F(F(x) = \int_{-\infty}^{x} f(t)dt$, with f density of X) is a non-decreasing function $\mathbb{R} \to [0; 1]$. Its inverse F^{-1} is called the quantile function. $\forall \beta \in]0; 1[$, the β -quantile is defined by $F^{-1}(\beta)$.

In particular: $P(X \leq F^{-1}(\beta)) = \beta$ and $P(X \geq F^{-1}(\beta)) = 1 - \beta$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Quantiles

Definition

The cumulative distribution function $F(F(x) = \int_{-\infty}^{x} f(t)dt$, with f density of X) is a non-decreasing function $\mathbb{R} \to [0; 1]$. Its inverse F^{-1} is called the quantile function. $\forall \beta \in]0; 1[$, the β -quantile is defined by $F^{-1}(\beta)$.

In particular:
$$P(X \leq F^{-1}(\beta)) = \beta$$
 and $P(X \geq F^{-1}(\beta)) = 1 - \beta$

In practice, either quantile are read from tables: either F or F^{-1} (old-fashioned) or they are computed using statistics softwares on computers (qnorm, qbinom, qpois, qt, qchisq, *etc.* in R). Quantile for the Gaussian distribution will (most of the time) be denoted z_{β} . For Student distribution t_{β} and so on. By the way: what are χ^2 and Student distribution ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Interval estimation

 $\hat{\theta}$: a point estimation of θ ; even in favourable situations, it is very unlikely that $\hat{\theta} = \theta$. How close is it ? Could an interval that contains the true value of θ with say a high probability (low error) be built ? Not too big (informative), but not too restricted neither (for the true value has a great chance of being in it).

Interval estimation

 $\hat{\theta}$: a point estimation of θ ; even in favourable situations, it is very unlikely that $\hat{\theta} = \theta$. How close is it ? Could an interval that contains the true value of θ with say a high probability (low error) be built ? Not too big (informative), but not too restricted neither (for the true value has a great chance of being in it).

Typically, a $1/\sqrt{n}$ -neighbourhood of $\hat{\theta}$ will do the job. It is much more useful than many digits in an estimator to give an interval with the associated error.

Interval estimation

 $\hat{\theta}$: a point estimation of θ ; even in favourable situations, it is very unlikely that $\hat{\theta} = \theta$. How close is it ? Could an interval that contains the true value of θ with say a high probability (low error) be built ? Not too big (informative), but not too restricted neither (for the true value has a great chance of being in it).

Typically, a $1/\sqrt{n}$ -neighbourhood of $\hat{\theta}$ will do the job. It is much more useful than many digits in an estimator to give an interval with the associated error.

Definition

- 1. A confidence interval \hat{I}_n is defined by a couple of estimators: $\hat{I}_n = [\hat{\theta}_1; \hat{\theta}_2].$
- 2. its associated confidence level 1α ($\alpha \in [0; 1]$) is s.t. $P(\theta \in \hat{I}_n) \ge 1 - \alpha$.
- 3. \hat{I}_n is asymptotically of level at least 1α if $\forall \epsilon > 0$, $\exists N_e$ s.t. $P(\theta \in \hat{I}_n) \ge 1 \alpha \epsilon$ for $n \ge N_e$.

Confidence intervals you need to know

a partial typology

- $X_i \sim \mathcal{N}(m, \sigma^2)$, with σ^2 known, then $I(m) = [\bar{x} + / z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$.
- ▶ when σ^2 is unknown, it becomes $I(m) = [\bar{x} + / -t_{n-1;1-\alpha/2} \frac{s_{n-1}}{\sqrt{n}}]$, with $s_{n-1}^2 := \frac{\sum (x_i - \bar{x})^2}{n-1}$ and $t_{n-1;1-\alpha/2}$ the quantile of a Student distribution with n-1 degrees of freedom (df). Note that $t_{n-1;1-\alpha/2} \simeq_n z_{1-\alpha/2}$.
- if Gaussianity is lost, we can only derive asymptotic confidence intervals.

► as for
$$\sigma^2$$
: if m is known $I_{\alpha} = [\frac{n \widehat{\sigma^2}}{\chi^2_{n;1-\alpha/2}}; \frac{n \widehat{\sigma^2}}{\chi^2_{n;\alpha/2}}]$

• when m is unknown:
$$I_{\alpha} = \left[\frac{(n-1)S_{n-1}^2}{\chi_{n-1;1-\alpha/2}^2}; \frac{(n-1)S_{n-1}^2}{\chi_{n;\alpha/2}^2}\right]$$

- ► confidence interval for a proportion: exercices (if time permits)
- ▶ for other distributions: use the Cramer-Rao bound !

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Next time

Multivariate descriptive statistics !

2013

17 / 17

Next time

Multivariate descriptive statistics !

Some notions of (advanced) algebras wil be needed. *E.g.* Matrices, operations, inverse, rank, projection, metrics, scalar product, eigenvalues/vectors, matrix norm, matrix approximation

E. Rachelson & M. Vignes (ISAE)

2013 17 / 17