Statistics and learning

Statistical estimation

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero
Wednesday $18^{\text {th }}$ September 2013

How to retrieve 'lecture' support \& practical sessions

LMS @ ISAE
or

My website
(clickable links)

Things you have to keep in mind

Crux of the estimation

- Population, sample and statistics.

Things you have to keep in mind

crux of the estimation

- Population, sample and statistics.
- Concept of estimator of a paramater.

Things you have to keep in mind

Crux of the estimation

- Population, sample and statistics.
- Concept of estimator of a paramater.
- Bias, comparison of estimators, Maximum Likelihood Estimator.

Things you have to keep in mind

Crux of the estimation

- Population, sample and statistics.
- Concept of estimator of a paramater.
- Bias, comparison of estimators, Maximum Likelihood Estimator.
- Sufficient statistics, quantiles.

Things you have to keep in mind

Crux of the estimation

- Population, sample and statistics.
- Concept of estimator of a paramater.
- Bias, comparison of estimators, Maximum Likelihood Estimator.
- Sufficient statistics, quantiles.
- Interval estimation.(2)

Statistical estimation

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,

Statistical estimation

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,
- a sample with $n \leq N$ independent observations $\left(x_{1} \ldots x_{n}\right)$ is extracted,

Statistical estimation

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,
- a sample with $n \leq N$ independent observations $\left(x_{1} \ldots x_{n}\right)$ is extracted,
- θ is estimated through a statistic (=function of $X_{i}{ }^{\prime} \mathrm{s}$):
$\hat{\theta}=T\left(X_{1} \ldots X_{n}\right)$.

Statistical estimation

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,
- a sample with $n \leq N$ independent observations $\left(x_{1} \ldots x_{n}\right)$ is extracted,
- θ is estimated through a statistic (=function of X_{i} 's):
$\hat{\theta}=T\left(X_{1} \ldots X_{n}\right)$.
Note: independence is true only if drawing is made with replacement. Without replacement, the approximation is ok if $n \ll N$.

Statistical estimation

Steps in estimation procedure:

- Consider a population (size N) described by a random variable X (known or unknown distribution) with parameter θ,
- a sample with $n \leq N$ independent observations $\left(x_{1} \ldots x_{n}\right)$ is extracted,
- θ is estimated through a statistic (=function of $X_{i}{ }^{\prime} \mathrm{s}$):
$\hat{\theta}=T\left(X_{1} \ldots X_{n}\right)$.
Note: independence is true only if drawing is made with replacement. Without replacement, the approximation is ok if $n \ll N$.

Mean estimation(2)

Estimate the average life span of a bulb...

Point estimation of a parameter

Recall

n realisations of random variables iid $\left(X_{1} \ldots X_{n}\right)$ are available. Some parameters can be of interest. Direct computation not feasible so estimation needed. Objective here: tools and maths grounds for estimation.

Point estimation of a parameter

Recall

n realisations of random variables iid ($X_{1} \ldots X_{n}$) are available. Some parameters can be of interest. Direct computation not feasible so estimation needed. Objective here: tools and maths grounds for estimation.

Definitions

- Statistical model: definition of a probability distribution P_{θ} (joint if discrete rv and density if continuous rv), with θ is a (p-vector of) unknown parameter(s).
- Statistic: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{(p)},\left(x_{i}\right)_{i=1 \ldots n} \mapsto T\left(x_{1} \ldots x_{n}\right)$. Examples: empirical mean or variance (known/unknown mean).

Estimator, bias, comparison

Exercice

Lift can bear $1,000 \mathrm{~kg}$. User weight $\sim \mathcal{N}\left(75,16^{2}\right)$.

- Max. number of people allowed in it if P (lift won't take off) $=10^{-6}$?
- Lift manufacturer allows 11 people inside. P (overweight) $=$??

Estimator, bias, comparison

Exercice

Lift can bear $1,000 \mathrm{~kg}$. User weight $\sim \mathcal{N}\left(75,16^{2}\right)$.

- Max. number of people allowed in it if P (lift won't take off) $=10^{-6}$?
- Lift manufacturer allows 11 people inside. P (overweight) =??

Definitions

- Estimator of an unknown parameter θ : a statistic denoted $\hat{\theta}$ (observed values are approximations of θ). The bias associated to $\hat{\theta}$ is $E[\hat{\theta}]-\theta$ (if $=0, \hat{\theta}$ is said to be unbiased). Ex: (exercices) (i) the empirical mean is an unbiaised estimator for the (theoretical) mean.
(ii) $S_{n}^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n}$ is a biased estimator for σ^{2}.
- $\hat{\theta}$ is asymptotically unbiased if $\lim _{n \rightarrow \infty} E[\hat{\theta}]=\theta$.
- $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$: 2 unbiased estimator for $\theta ; \hat{\theta}_{1}$ is better than $\hat{\theta}_{2}$ if $\operatorname{Var}\left(\hat{\theta}_{1}\right)<\operatorname{Var}\left(\hat{\theta}_{2}\right) ;$ in practice, $\hat{\theta}_{1}$ converges faster than $\hat{\theta}_{2}$.

Application break

Estimating the duration of a traffic light
$\theta>0$ is the actual duration of a traffic light. Unknown. We observe a sample $t_{1} \ldots t_{n}$, where t_{i} is the waiting time of driver i.

1. What is a good modelling for T_{i} 's ? Density ? Mean and variance ?
2. If $\bar{T}=\frac{1}{n} \sum_{i=1}^{n} T_{i}$, what is $E[\bar{T}]$? $\operatorname{var}(\bar{T})$? Can you use \bar{T} to build an unbiased estimator of θ ? Establish its probability convergence.
3. Let $M_{n}=\sup _{i} T_{i}$. Compute the cumulative probability function of M_{n} ? Density ? Mean and variance ? Plot the cpf for $n=3, n=30$ and interpret. Use M_{n} to build an unbiased probability-convergent estimator of θ.
4. Compare the variances of both estimators. Which one would you use to estimate θ ?
5. Numerical application for $n=3$ and $\left(t_{1}, t_{2}, t_{3}\right)=(2,24,13)$.

Convergence of estimators

Def: $\hat{\theta}$ converges in probability towards θ if $\forall \epsilon>0, P(|\hat{\theta}-\theta|<\epsilon) \rightarrow_{n} 1$.

Convergence of estimators

Def: $\hat{\theta}$ converges in probability towards θ if $\forall \epsilon>0, P(|\hat{\theta}-\theta|<\epsilon) \rightarrow_{n} 1$.
Theorem
An (asymptotically) unbiased estimator s.t. $\lim _{n} \operatorname{Var}(\hat{\theta})=0$ converges in probability towards θ.

Convergence of estimators

Def: $\hat{\theta}$ converges in probability towards θ if $\forall \epsilon>0, P(|\hat{\theta}-\theta|<\epsilon) \rightarrow_{n} 1$.

Theorem

An (asymptotically) unbiased estimator s.t. $\lim _{n} \operatorname{Var}(\hat{\theta})=0$ converges in probability towards θ.

Theorem

An unbiased estimator $\hat{\theta}$ with the following technical regularity hypotheses (H1-H5) verifies $\operatorname{Var}(\hat{\theta})>V_{n}(\theta)$, with the Cramer-Rao bound $V_{n}(\theta):=\left(-E\left[\frac{\partial^{2} \log f\left(X_{1} \ldots X_{n} ; \theta\right)}{\partial \theta^{2}}\right]\right)^{-1}$ (inverse of Fisher information).
(H1) the support $D:=\{X, f(x ; \theta)>0\}$ does not depend upon θ.
(H2) θ belongs to an open interval I.
(H3) on $I \times D, \frac{\partial f}{\partial \theta}$ and $\frac{\partial^{2} f}{\partial \theta^{2}}$ exist and are integrable over x.
(H4) $\theta \mapsto \int_{A} f(x ; \theta) d x$ has a second order derivative $(x \in I, A \in B(\mathbb{R}))$
(H5) $\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right)^{2}$ is integrable.

Application to the estimation of a $|\mathcal{N}|$

Definition

An unbiased estimator $\hat{\sigma}$ for θ is efficient if its variance is equal to the Cramer-Rao bound. It is the best possible among unbiased estimators.

Application to the estimation of a $|\mathcal{N}|$

Definition

An unbiased estimator $\hat{\sigma}$ for θ is efficient if its variance is equal to the Cramer-Rao bound. It is the best possible among unbiased estimators.

Exercice

Let $\left(X_{i}\right)_{i=1 \ldots n}$ iid $\mathrm{rv} \sim \mathcal{N}\left(m, \sigma^{2}\right)$. $Y_{i}:=\left|X_{i}-m\right|$ is observed.

- Density of Y_{i} ? Compute $E\left[Y_{i}\right]$? Interpretation compared to σ ?
- Let $\hat{\sigma}:=\sum_{i} a_{i} Y_{i}$. If we want $\hat{\sigma}$ to be unbiased, give a constraint on $\left(a_{i}\right)$'s. Under this constraint, show that $\operatorname{Var}(\hat{\sigma})$ is minimum iif all a_{i} are equal. In this case, give the variance.
- Compare the Cramer-Rao bound to the above variance. Is the built estimator efficient?

Likelihood function

Definition

The likelihood of a rv $\mathbf{X}=\left(X_{1} \ldots X_{n}\right)$ is the function L :

$$
\begin{aligned}
L: \mathbb{R}^{n} \times \Theta & \longrightarrow \\
\quad(x, \theta) & \longmapsto L(x ; \theta):=\left\{\begin{array}{l}
f(x ; \theta), \text { the density of } \mathbf{X} \\
\text { or } \\
P_{\theta}\left(X_{1}=x_{1} \ldots X_{n}=x_{n}\right), \text { if } \mathbf{X} \text { discrete }
\end{array}\right.
\end{aligned}
$$

Likelihood function

Definition

The likelihood of a rv $\mathbf{X}=\left(X_{1} \ldots X_{n}\right)$ is the function L :
$L: \mathbb{R}^{n} \times \Theta \longrightarrow \quad \mathbb{R}^{+}$

$$
(x, \theta) \longmapsto L(x ; \theta):=\left\{\begin{array}{l}
f(x ; \theta), \text { the density of } \mathbf{X} \\
\text { or } \\
P_{\theta}\left(X_{1}=x_{1} \ldots X_{n}=x_{n}\right), \text { if } \mathbf{X} \text { discrete }
\end{array}\right.
$$

Examples

- X_{i} Gaussian iid rv:

$$
L(x ; \theta)=\prod_{i} f\left(x_{i} ; \theta\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \exp \left[-\frac{1}{2} \sum_{i}\left(\frac{x_{i}-m}{\sigma}\right)^{2}\right]
$$

- X_{i} Bernouilli iid rv: $L(x ; \theta)=p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}$

Maximum likelihood estimation (MLE)

Definition

$$
\hat{\theta}_{M L E}:=\arg \max _{\theta \in \Theta}(\log) L\left(x_{1} \ldots x_{n} ; \theta\right)
$$

Interpretation: $\hat{\theta}_{M L E}$ is the parameter value that gives maximum probability to the observed values or random variables...

Maximum likelihood estimation (MLE)

Definition

$$
\hat{\theta}_{M L E}:=\arg \max _{\theta \in \Theta}(\log) L\left(x_{1} \ldots x_{n} ; \theta\right)
$$

Interpretation: $\hat{\theta}_{M L E}$ is the parameter value that gives maximum probability to the observed values or random variables...

Remark: the EMV does not always exists (possible alternatives: least square or moments). When it exists, it is not necessarily unique, can be biased or not efficient. However...

Maximum likelihood estimation (MLE)

Definition

$$
\hat{\theta}_{M L E}:=\arg \max _{\theta \in \Theta}(\log) L\left(x_{1} \ldots x_{n} ; \theta\right)
$$

Interpretation: $\hat{\theta}_{M L E}$ is the parameter value that gives maximum probability to the observed values or random variables...

Remark: the EMV does not always exists (possible alternatives: least square or moments). When it exists, it is not necessarily unique, can be biased or not efficient. However...
Theorem

- $\hat{\theta}_{M L E}$ is asymptotically unbiased and efficient.
- $\frac{\hat{\theta}_{M L E}-\theta}{V_{n}(\theta)} \longrightarrow{ }_{n} \mathcal{N}(0,1)$, where $V_{n}(\theta)$ is the Cramer-Rao bound.
- $\hat{\theta}_{M L E}$ converges to θ in squared mean.

Maximum likelihood estimation (MLE)

Definition

$$
\hat{\theta}_{M L E}:=\arg \max _{\theta \in \Theta}(\log) L\left(x_{1} \ldots x_{n} ; \theta\right)
$$

Interpretation: $\hat{\theta}_{M L E}$ is the parameter value that gives maximum probability to the observed values or random variables...

Remark: the EMV does not always exists (possible alternatives: least square or moments). When it exists, it is not necessarily unique, can be biased or not efficient. However...

Theorem

- $\hat{\theta}_{M L E}$ is asymptotically unbiased and efficient.
- $\frac{\hat{\theta}_{M L E}-\theta}{V_{n}(\theta)} \longrightarrow{ }_{n} \mathcal{N}(0,1)$, where $V_{n}(\theta)$ is the Cramer-Rao bound.
- $\hat{\theta}_{M L E}$ converges to θ in squared mean. 'MLE for a proportion' exercice ? Mean and variance estimation of $\mathcal{N}(\mu, \sigma)$.

Sufficient statistic

Remark/definition

Any realisation $\left(x_{i}\right)$ of a rv X, unknown distribution but parameterised by θ, from a sample contains information on θ. If the statistic summarises all possible information from the sample, it is sufficient. In other words " no other statistic which can be calculated from the same sample provides any additional information as to the value of the parameter" (Fisher 1922) In mathematical terms: $P(X=x \mid T=t, \theta)=P(X=x \mid T=t)$

Sufficient statistic

Remark/definition

Any realisation $\left(x_{i}\right)$ of a rv X, unknown distribution but parameterised by θ, from a sample contains information on θ. If the statistic summarises all possible information from the sample, it is sufficient. In other words " no other statistic which can be calculated from the same sample provides any additional information as to the value of the parameter" (Fisher 1922) In mathematical terms: $P(X=x \mid T=t, \theta)=P(X=x \mid T=t)$

Theorem (Fisher-Neyman)

$T(X)$ is sufficient if there exist 2 functions g and h s.t.
$L(x ; \theta)=g(t ; \theta) h(x)$
Implication: in the context of MLE, 2 samples yielding the same value for T yield the same inferences about θ. (dep. on θ is only in conjunction with T).

Sufficient statistic

An example

Sufficiency of an estimator of a proportion

Quality control in a factory: n items drawn with replacement to estimate p the proportion of faulty items. $X_{i}=1$ if item i is cracked, 0 otherwise. Show that the 'classical' estimator for $p, \frac{1}{n} \sum_{i=1}^{n} X_{i}$ is sufficient.

Quantiles

Definition

The cumulative distribution function $F\left(F(x)=\int_{-\infty}^{x} f(t) d t\right.$, with f density of $X)$ is a non-decreasing function $\mathbb{R} \rightarrow[0 ; 1]$. Its inverse F^{-1} is called the quantile function. $\forall \beta \in] 0 ; 1[$, the β-quantile is defined by $F^{-1}(\beta)$.

Quantiles

Definition

The cumulative distribution function $F\left(F(x)=\int_{-\infty}^{x} f(t) d t\right.$, with f density of $X)$ is a non-decreasing function $\mathbb{R} \rightarrow[0 ; 1]$. Its inverse F^{-1} is called the quantile function. $\forall \beta \in] 0 ; 1[$, the β-quantile is defined by $F^{-1}(\beta)$.

In particular: $P\left(X \leq F^{-1}(\beta)\right)=\beta$ and $P\left(X \geq F^{-1}(\beta)\right)=1-\beta$

Quantiles

Definition

The cumulative distribution function $F\left(F(x)=\int_{-\infty}^{x} f(t) d t\right.$, with f density of $X)$ is a non-decreasing function $\mathbb{R} \rightarrow[0 ; 1]$. Its inverse F^{-1} is called the quantile function. $\forall \beta \in] 0 ; 1[$, the β-quantile is defined by $F^{-1}(\beta)$.

In particular: $P\left(X \leq F^{-1}(\beta)\right)=\beta$ and $P\left(X \geq F^{-1}(\beta)\right)=1-\beta$
In practice, either quantile are read from tables: either F or F^{-1} (old-fashioned) or they are computed using statistics softwares on computers (qnorm, qbinom, qpois, qt, qchisq, etc. in R).
Quantile for the Gaussian distribution will (most of the time) be denoted z_{β}. For Student distribution t_{β} and so on.
By the way: what are χ^{2} and Student distribution ?

Interval estimation

$\hat{\theta}$: a point estimation of θ; even in favourable situations, it is very unlikely that $\hat{\theta}=\theta$. How close is it ? Could an interval that contains the true value of θ with say a high probability (low error) be built ? Not too big (informative), but not too restricted neither (for the true value has a great chance of being in it).

Interval estimation

$\hat{\theta}$: a point estimation of θ; even in favourable situations, it is very unlikely that $\hat{\theta}=\theta$. How close is it ? Could an interval that contains the true value of θ with say a high probability (low error) be built ? Not too big (informative), but not too restricted neither (for the true value has a great chance of being in it).
Typically, a $1 / \sqrt{n}$-neighbourhood of $\hat{\theta}$ will do the job. It is much more useful than many digits in an estimator to give an interval with the associated error.

Interval estimation

$\hat{\theta}$: a point estimation of θ; even in favourable situations, it is very unlikely that $\hat{\theta}=\theta$. How close is it ? Could an interval that contains the true value of θ with say a high probability (low error) be built ? Not too big (informative), but not too restricted neither (for the true value has a great chance of being in it).
Typically, a $1 / \sqrt{n}$-neighbourhood of $\hat{\theta}$ will do the job. It is much more useful than many digits in an estimator to give an interval with the associated error.

Definition

1. A confidence interval \hat{I}_{n} is defined by a couple of estimators: $\hat{I}_{n}=\left[\hat{\theta}_{1} ; \hat{\theta}_{2}\right]$.
2. its associated confidence level $1-\alpha(\alpha \in[0 ; 1])$ is s.t.
$P\left(\theta \in \hat{I}_{n}\right) \geq 1-\alpha$.
3. \hat{I}_{n} is asymptotically of level at least $1-\alpha$ if $\forall \epsilon>0, \exists N_{e}$ s.t. $P\left(\theta \in \hat{I}_{n}\right) \geq 1-\alpha-\epsilon$ for $n \geq N_{e}$.

Confidence intervals you need to know

a partial typology

- $X_{i} \sim \mathcal{N}\left(m, \sigma^{2}\right)$, with σ^{2} known, then $I(m)=\left[\bar{x}+/-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]$.
- when σ^{2} is unknown, it becomes $I(m)=\left[\bar{x}+/-t_{n-1 ; 1-\alpha / 2} \frac{s_{n-1}}{\sqrt{n}}\right]$, with $s_{n-1}^{2}:=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}$ and $t_{n-1 ; 1-\alpha / 2}$ the quantile of a Student distribution with $n-1$ degrees of freedom (df). Note that $t_{n-1 ; 1-\alpha / 2} \simeq_{n} z_{1-\alpha / 2}$.
- if Gaussianity is lost, we can only derive asymptotic confidence intervals.
- as for σ^{2} : if m is known $I_{\alpha}=\left[\frac{n \widehat{\sigma^{2}}}{\chi_{n, 1-\alpha / 2}^{2}} ; \frac{n \widehat{\sigma^{2}}}{\chi_{n ; \alpha / 2}^{2}}\right]$
- when m is unknown: $I_{\alpha}=\left[\frac{(n-1) S_{n-1}^{2}}{\chi_{n-1 ; 1-\alpha / 2}^{2}} ; \frac{(n-1) S_{n-1}^{2}}{\chi_{n ; \alpha / 2}^{2}}\right]$
- confidence interval for a proportion: exercices (if time permits)
- for other distributions: use the Cramer-Rao bound!

Next time

Multivariate descriptive statistics !

Next time

Multivariate descriptive statistics !

Some notions of (advanced) algebras wil be needed. E.g. Matrices, operations, inverse, rank, projection, metrics, scalar product, eigenvalues/vectors, matrix norm, matrix approximation

