Statistics and learning
 Multivariate statistics 2 and clustering

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

Wednesday $2^{\text {nd }}$ and $9^{\text {th }}$ October 2013

Link to the previous session

Goal of multivariate (exploratory) statistics: understanding high-dimensional data sets, reducing their 'useful' dimensions, representing them, seeking hidden or latent factors ...
Today we will:

- review PCA needed?

Link to the previous session

Goal of multivariate (exploratory) statistics: understanding high-dimensional data sets, reducing their 'useful' dimensions, representing them, seeking hidden or latent factors ...
Today we will:

- review PCA needed ?
- introduce Multidimensional scaling (MDS) as a factor analysis of a distance matrix

Link to the previous session

Goal of multivariate (exploratory) statistics: understanding high-dimensional data sets, reducing their 'useful' dimensions, representing them, seeking hidden or latent factors ...
Today we will:

- review PCA needed ?
- introduce Multidimensional scaling (MDS) as a factor analysis of a distance matrix
- introduce Canonical correlation analysis (CCA): for p quantitative variables and q quantitative variables)

Link to the previous session

Goal of multivariate (exploratory) statistics: understanding high-dimensional data sets, reducing their 'useful' dimensions, representing them, seeking hidden or latent factors ...
Today we will:

- review PCA needed ?
- introduce Multidimensional scaling (MDS) as a factor analysis of a distance matrix
- introduce Canonical correlation analysis (CCA): for p quantitative variables and q quantitative variables)
- introduce Correspondence analysis (CA): for 2 qualitative variables with several (many) levels.

Link to the previous session

Goal of multivariate (exploratory) statistics: understanding high-dimensional data sets, reducing their 'useful' dimensions, representing them, seeking hidden or latent factors ...
Today we will:

- review PCA needed ?
- introduce Multidimensional scaling (MDS) as a factor analysis of a distance matrix
- introduce Canonical correlation analysis (CCA): for p quantitative variables and q quantitative variables)
- introduce Correspondence analysis (CA): for 2 qualitative variables with several (many) levels.
- introduce clustering methods like hierarchical clustering or Kmeans-like algorithms.

Multidimensional scaling (MDS)

- now only an index between individual is known, variables are not observed anymore: $n \times n$ matrix (think of distances).

Multidimensional scaling (MDS)

- now only an index between individual is known, variables are not observed anymore: $n \times n$ matrix (think of distances).
- Goal: represent the cloud of points in a low-dimensional subspace.

Multidimensional scaling (MDS)

- now only an index between individual is known, variables are not observed anymore: $n \times n$ matrix (think of distances).
- Goal: represent the cloud of points in a low-dimensional subspace.
- MDS = PCA on distance matrix !

Multidimensional scaling (MDS)

- now only an index between individual is known, variables are not observed anymore: $n \times n$ matrix (think of distances).
- Goal: represent the cloud of points in a low-dimensional subspace.
- MDS = PCA on distance matrix !

Easy example

> Road distances between 47 French cities. Is it
> Euclidian?

Canonical correlation analysis (CCA)

- Uses techniques close to PCA to achieve a kind of multiple output multivariate regression

Canonical correlation analysis (CCA)

- Uses techniques close to PCA to achieve a kind of multiple output multivariate regression
- Goal: Linking 2 groups of variables (X and Y) measured on the same individuals

Canonical correlation analysis (CCA)

- Uses techniques close to PCA to achieve a kind of multiple output multivariate regression
- Goal: Linking 2 groups of variables (X and Y) measured on the same individuals
- Example from yesterday on the study of fatty acids and gene levels on mice: are some acids more present when some genes are over-expressed ? Or conversely ? \rightarrow Practical session!

Canonical correlation analysis (CCA)

- Uses techniques close to PCA to achieve a kind of multiple output multivariate regression
- Goal: Linking 2 groups of variables (X and Y) measured on the same individuals
- Example from yesterday on the study of fatty acids and gene levels on mice: are some acids more present when some genes are over-expressed ? Or conversely ? \rightarrow Practical session!
- Consists in looking for a couple of vectors, one related to X (gene expressions) and one to Y (metabolite levels) which are maximally conected. And iteratively (without correlation between iterations).

Canonical correlation analysis (CCA)

- Uses techniques close to PCA to achieve a kind of multiple output multivariate regression
- Goal: Linking 2 groups of variables (X and Y) measured on the same individuals
- Example from yesterday on the study of fatty acids and gene levels on mice: are some acids more present when some genes are over-expressed ? Or conversely ? \rightarrow Practical session!
- Consists in looking for a couple of vectors, one related to X (gene expressions) and one to Y (metabolite levels) which are maximally conected. And iteratively (without correlation between iterations).
- Variables can be represented in either basis, it does not change the interpretation.

CCA (cont'd)

Need to have $p, q \leq n$. We kept 10 genes and 11 fatty acids.

More interpretation ? \rightarrow Practical session

Correspondence analysis (CA)

- Becomes AFC in French

Correspondence analysis (CA)

- Becomes AFC in French
- similar concept to PCA: represent the distribution of the 2 variables and plots the individuals. but applies to qualitative rather than quantitative data \rightarrow contingency table $\left(n_{i, j}\right)$

Correspondence analysis (CA)

- Becomes AFC in French
- similar concept to PCA: represent the distribution of the 2 variables and plots the individuals. but applies to qualitative rather than quantitative data \rightarrow contingency table ($n_{i, j}$)
- This is double PCA (line and column profiles) on $\left(X_{i j}\right)=\left(\frac{f_{i, j}}{f_{i, f}, f_{j}}-1\right)$, with $f_{i, j}=n_{i, j} / n$.

Correspondence analysis (CA)

- Becomes AFC in French
- similar concept to PCA: represent the distribution of the 2 variables and plots the individuals. but applies to qualitative rather than quantitative data \rightarrow contingency table $\left(n_{i, j}\right)$
- This is double PCA (line and column profiles) on $\left(X_{i j}\right)=\left(\frac{f_{i, j}}{f_{i, f}, f_{j}}-1\right)$, with $f_{i, j}=n_{i, j} / n$.
- Note that χ^{2} writes $n \sum_{i} \sum_{j} \tilde{f_{i, j}} x_{i, j}^{2}$

CA: an example

Cultivated area in the Midi-Pyrénées region Simultaneous representation of département and farm size (in 6 bins).

Today

- "Clustering: unsupervised classification". Distance, hierarchical clustering (divisive or agglomerative).
- Keep in mind that this is still exploratory statistics so the best clustering (including method, options, criterion, etc.) is the most useful ?!
- End of practical session on mice data set.
- And a new guided session on multivariate stats: CA on presidential elections, PCA and clustering (k-means and AHC) on hotel data set and multiple CA on 2 multiple factor data sets.

Clustering: grouping into classes

Ever heard of that in your background ??

Clustering: grouping into classes

Clustering: grouping into classes

Cluster analysis or clustering

- Task of grouping objects so that objects belonging to the same group are 'more similar' to each other than to those in any other group \rightarrow multiobjective optimisation task.

Cluster analysis or clustering

- Task of grouping objects so that objects belonging to the same group are 'more similar' to each other than to those in any other group \rightarrow multiobjective optimisation task.

Cluster analysis or clustering

- Task of grouping objects so that objects belonging to the same group are 'more similar' to each other than to those in any other group \rightarrow multiobjective optimisation task.

Cluster analysis or clustering

- Task of grouping objects so that objects belonging to the same group are 'more similar' to each other than to those in any other group \rightarrow multiobjective optimisation task.
hierarchical agglomerative clustering

Cluster analysis or clustering

- Task of grouping objects so that objects belonging to the same group are 'more similar' to each other than to those in any other group \rightarrow multiobjective optimisation task.
hierarchical agglomerative clustering

Cluster analysis or clustering

- Task of grouping objects so that objects belonging to the same group are 'more similar' to each other than to those in any other group \rightarrow multiobjective optimisation task.
hierarchical agglomerative clustering

- Several algorithms can do the job, their differences mainly being about used distance.

Cluster analysis or clustering

- Task of grouping objects so that objects belonging to the same group are 'more similar' to each other than to those in any other group \rightarrow multiobjective optimisation task.
hierarchical agglomerative clustering

- Several algorithms can do the job, their differences mainly being about used distance.
- Possibly, different parameters (initialisation, distance used, ending criterion ...) lead to different representations.

Clustering algorithms

Challenge: build your own clustering algorithm ?!

Clustering algorithms

Challenge: build your own clustering algorithm ?!
Let's quote only few of widespread clustering algorithms:

- hierarchical clustering with dissimilarity min \rightarrow single, max \rightarrow complete or mean \rightarrow average linkages)
- centroid models (e.g. K-means clustering)
- distribution models (statistical definition e.g. multivariate Gaussian distribution)
- graph or density models (e.g. clique)

Clustering: some formalism

- Define a similarity (symetry, self-similarity, bounded) \rightarrow dissimilarity
- Distance need additional properties: $d(i, j)=0 \Rightarrow i=j$ and triangular inequality (Euclidian dist. from scalar product)

Clustering: some formalism

- Define a similarity (symetry, self-similarity, bounded) \rightarrow dissimilarity
- Distance need additional properties: $d(i, j)=0 \Rightarrow i=j$ and triangular inequality (Euclidian dist. from scalar product)

A goodness-of-fit of partitions can be defined: (i) external: TP, FP ... \rightarrow precision, sensitivity or Rand/Jaccard index or (ii) internal: Dunn index $D=\min _{i} \min _{j \neq i} \frac{d(i, j)}{\max _{k} d^{\prime}(k)}$.

Homework

What do students choose after French baccalauréat ?
First describe and then represent this (simple) data set in some informative way.

Hint: CA...

origin	counselling			
	université	prep. clas.	other	Total
bac lit.	13	2	5	20
bac éco.	20	2	8	30
bac scient.	10	5	5	20
bac tech.	7	1	22	30
Total	50	10	40	100

Finished

Next time: tests

Finished

Next time: tests

But before that: practice with R ?!

