Statistics and learning Regression

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

Wednesday $6^{\text {th }}$ November 2013

The regression model

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^{p}$ according to:

$$
Y=f(X ; \beta)+\epsilon,
$$

where functional f depends on unknown parameters $\beta_{1}, \ldots, \beta_{k}$ and the residual (or error) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

The regression model

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^{p}$ according to:

$$
Y=f(X ; \beta)+\epsilon,
$$

where functional f depends on unknown parameters $\beta_{1}, \ldots, \beta_{k}$ and the residual (or error) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

- Goal: from n experimental observations $\left(x_{i}, y_{i}\right)$, we aim at

The regression model

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^{p}$ according to:

$$
Y=f(X ; \beta)+\epsilon,
$$

where functional f depends on unknown parameters $\beta_{1}, \ldots, \beta_{k}$ and the residual (or error) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

- Goal: from n experimental observations $\left(x_{i}, y_{i}\right)$, we aim at
- estimating unknown $\left(\beta_{l}\right)_{l=1 \ldots k}$,

The regression model

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^{p}$ according to:

$$
Y=f(X ; \beta)+\epsilon,
$$

where functional f depends on unknown parameters $\beta_{1}, \ldots, \beta_{k}$ and the residual (or error) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

- Goal: from n experimental observations $\left(x_{i}, y_{i}\right)$, we aim at
- estimating unknown $\left(\beta_{l}\right)_{l=1 \ldots k}$,
- evaluating the fitness of the model

The regression model

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^{p}$ according to:

$$
Y=f(X ; \beta)+\epsilon,
$$

where functional f depends on unknown parameters $\beta_{1}, \ldots, \beta_{k}$ and the residual (or error) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

- Goal: from n experimental observations $\left(x_{i}, y_{i}\right)$, we aim at
- estimating unknown $\left(\beta_{l}\right)_{l=1 \ldots k}$,
- evaluating the fitness of the model
- if the fit is acceptable, tests on parameters can be performed and the model can be used for predictions

Simple linear regression

- A single explanatory variable X and an affine relationship to the dependant variable Y :

$$
E[Y \mid X=x]=\beta_{0}+\beta_{1} x \text { or } Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

where β_{1} is the slope of the adjusted regression line and β_{0} is the intercept.

Simple linear regression

- A single explanatory variable X and an affine relationship to the dependant variable Y :

$$
E[Y \mid X=x]=\beta_{0}+\beta_{1} x \text { or } Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

where β_{1} is the slope of the adjusted regression line and β_{0} is the intercept.

- Residuals ϵ_{i} are assumed to be centred (R1), have equal variances $\left(=\sigma^{2}, \mathrm{R} 2\right)$ and be uncorrelated: $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0, \quad \forall i \neq j(\mathrm{R} 3)$.

Simple linear regression

- A single explanatory variable X and an affine relationship to the dependant variable Y :

$$
E[Y \mid X=x]=\beta_{0}+\beta_{1} x \text { or } Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

where β_{1} is the slope of the adjusted regression line and β_{0} is the intercept.

- Residuals ϵ_{i} are assumed to be centred (R1), have equal variances $\left(=\sigma^{2}, \mathrm{R} 2\right)$ and be uncorrelated: $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0, \quad \forall i \neq j(\mathrm{R} 3)$.
- Hence: $E\left[Y_{i}\right]=\beta_{0}+\beta_{1} x_{i}, \operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0, \quad \forall i \neq j$.

Simple linear regression

- A single explanatory variable X and an affine relationship to the dependant variable Y :

$$
E[Y \mid X=x]=\beta_{0}+\beta_{1} x \text { or } Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

where β_{1} is the slope of the adjusted regression line and β_{0} is the intercept.

- Residuals ϵ_{i} are assumed to be centred (R1), have equal variances $\left(=\sigma^{2}, \mathrm{R} 2\right)$ and be uncorrelated: $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0, \quad \forall i \neq j$ (R3).
- Hence: $E\left[Y_{i}\right]=\beta_{0}+\beta_{1} x_{i}, \operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0, \quad \forall i \neq j$.
- Fitting (or adjusting) the model $=$ estimate β_{0}, β_{1} and σ from the n-sample $\left(x_{i}, y_{i}\right)$.

Least square estimate

- Seeking values for β_{0} and β_{1} minimising the sum of quadratic errors:

$$
\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\operatorname{argmin}_{\left(\beta_{0}, \beta_{1}\right) \in \mathbb{R}^{2}} \sum\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}
$$

Least square estimate

- Seeking values for β_{0} and β_{1} minimising the sum of quadratic errors:

$$
\left(\hat{\beta}_{0}, \hat{\beta_{1}}\right)=\operatorname{argmin}_{\left(\beta_{0}, \beta_{1}\right) \in \mathbb{R}^{2}} \sum\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}
$$

Note that Y and X
do not play a symetric role!

Least square estimate

- Seeking values for β_{0} and β_{1} minimising the sum of quadratic errors:

$$
\left(\hat{\beta_{0}}, \hat{\beta}_{1}\right)=\operatorname{argmin}_{\left(\beta_{0}, \beta_{1}\right) \in \mathbb{R}^{2}} \sum\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}
$$

Note that Y and X
do not play a
symetric role!

- In matrix notation (useful later): $Y=X . B+\epsilon$, with

$$
\begin{aligned}
& Y={ }^{\top}\left(Y_{1} \ldots Y_{n}\right), B=^{\top}\left(\beta_{0}, \beta_{1}\right), \epsilon=^{\top}\left(\epsilon_{1} \ldots \epsilon_{n}\right) \text { and } \\
& X={ }^{\top}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
X_{1} & \cdots & X_{n}
\end{array}\right) .
\end{aligned}
$$

Estimator properties

- useful notations: $\bar{x}=1 / n \sum_{i} x_{i}, \bar{y}, s_{x}^{2}, s_{y}^{2}$ and

$$
s_{x y}=1 /(n-1) \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) .
$$

Estimator properties

- useful notations: $\bar{x}=1 / n \sum_{i} x_{i}, \bar{y}, s_{x}^{2}, s_{y}^{2}$ and $s_{x y}=1 /(n-1) \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$.
- Linear correlation coefficient: $r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}$.

Estimator properties

- useful notations: $\bar{x}=1 / n \sum_{i} x_{i}, \bar{y}, s_{x}^{2}, s_{y}^{2}$ and $s_{x y}=1 /(n-1) \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$.
- Linear correlation coefficient: $r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}$.

Theorem

1. Least Square estimators are $\hat{\beta}_{1}=s_{x y} / s_{x}^{2}$ and $\hat{\beta_{0}}=\bar{y}-\hat{\beta_{1}} \bar{x}$.
2. These estimators are unbiased and efficient.
3. $s^{2}=\frac{1}{n-2} \sum_{i}\left[y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}$ is an unbiased estimator of σ^{2}. It is however not efficient.
4. $\operatorname{Var}\left(\hat{\beta_{1}}\right)=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}$ and $\operatorname{Var}\left(\hat{\beta_{0}}\right)=\bar{x}^{2} \operatorname{Var}\left(\hat{\beta_{1}}\right)+\sigma^{2} / n$

Simple Gaussian linear model

- In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j, \epsilon_{i}$ and ϵ_{j} independent and (R4) $\forall i, \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ or equivalently $y_{i} \sim \mathcal{N}\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$.

Simple Gaussian linear model

- In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j, \epsilon_{i}$ and ϵ_{j} independent and (R4) $\forall i, \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ or equivalently $y_{i} \sim \mathcal{N}\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$.
- Theorem: under (R1, R2, R3' and R4), Least Square estimators $=$ MLE.

Simple Gaussian linear model

- In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j, \epsilon_{i}$ and ϵ_{j} independent and (R4) $\forall i, \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ or equivalently $y_{i} \sim \mathcal{N}\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$.
- Theorem: under (R1, R2, R3' and R4), Least Square estimators $=$ MLE.

Theorem (Distribution of estimators)

1. $\hat{\beta_{0}} \sim \mathcal{N}\left(\beta_{0}, \sigma_{\hat{\beta}_{0}}^{2}\right)$ and $\hat{\beta_{1}} \sim \mathcal{N}\left(\beta_{0}, \sigma_{\hat{\beta}_{1}}^{2}\right)$, with

$$
\sigma_{\hat{\beta}_{0}}^{2}=\sigma^{2}\left(\bar{x}^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}+1 / n\right) \text { and } \sigma_{\hat{\beta}_{1}}^{2}=\sigma^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

2. $(n-2) s^{2} / \sigma^{2} \sim \chi_{n-2}^{2}$
3. $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$ are independent of $\hat{\epsilon_{i}}$.
4. Estimators of $\sigma_{\hat{\beta}_{0}}^{2}$ and $\sigma_{\hat{\beta}_{1}}^{2}$ are given in 1. by replacing σ^{2} by s^{2}.

Tests, ANOVA and determination coefficient

- Previous theorem allows us to build Cl for β_{0} and β_{1}.

Tests, ANOVA and determination coefficient

- Previous theorem allows us to build Cl for β_{0} and β_{1}.
- $S S T / n=S S R / n+S S E / n$, with $S S T=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}$ (total sum of squares), $S S R=\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ (regression sum of squares) and $S S E=\sum_{i}\left(y_{i}-\overline{y_{i}}\right)^{2}$ (sum of squared errors).

Tests, ANOVA and determination coefficient

- Previous theorem allows us to build Cl for β_{0} and β_{1}.
- $S S T / n=S S R / n+S S E / n$, with $S S T=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}$ (total sum of squares), $S S R=\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ (regression sum of squares) and $S S E=\sum_{i}\left(y_{i}-\overline{y_{i}}\right)^{2}$ (sum of squared errors).
- Definition: Determination coefficient $R^{2}=\frac{\sum_{i}\left(\hat{y_{i}}-\bar{y}\right)^{2}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}=1-\frac{\text { Residual Variance }}{\text { Total variance }}$.

Tests, ANOVA and determination coefficient

- Previous theorem allows us to build Cl for β_{0} and β_{1}.
- $S S T / n=S S R / n+S S E / n$, with $S S T=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}$ (total sum of squares), $S S R=\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ (regression sum of squares) and $S S E=\sum_{i}\left(y_{i}-\bar{y}_{i}\right)^{2}$ (sum of squared errors).
- Definition: Determination coefficient $R^{2}=\frac{\sum_{i}\left(\hat{y_{i}}-\bar{y}\right)^{2}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}=1-\frac{\text { Residual Variance }}{\text { Total variance }}$.
\rightarrow Always use scatterplots to interpret linear model

Prediction

- Given a new x^{*}, what is the prediction \tilde{y} ?

Prediction

- Given a new x^{*}, what is the prediction \tilde{y} ?
- It's simply $\widehat{y\left(x^{*}\right)}=\hat{\beta_{0}}+\hat{\beta}_{1} x^{*}$. But what is its precision ?

Prediction

- Given a new x^{*}, what is the prediction \tilde{y} ?
- It's simply $\widehat{y\left(x^{*}\right)}=\hat{\beta_{0}}+\hat{\beta}_{1} x^{*}$. But what is its precision ?
- Its Cl is $\left[\hat{\beta_{0}}+\hat{\beta_{1}} x^{*}+/-t_{n-2 ; 1-\alpha / 2} s^{*}\right]$, where

$$
s^{*}=s \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

Prediction

- Given a new x^{*}, what is the prediction \tilde{y} ?
- It's simply $\widehat{y\left(x^{*}\right)}=\hat{\beta_{0}}+\hat{\beta}_{1} x^{*}$. But what is its precision ?
- Its Cl is $\left[\hat{\beta_{0}}+\hat{\beta_{1}} x^{*}+/-t_{n-2 ; 1-\alpha / 2} s^{*}\right]$, where
$s^{*}=s \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}$.
- Predictions are valid in the range of $\left(x_{i}\right)$'s.

Prediction

- Given a new x^{*}, what is the prediction \tilde{y} ?
- It's simply $\widehat{y\left(x^{*}\right)}=\hat{\beta_{0}}+\hat{\beta}_{1} x^{*}$. But what is its precision ?
- Its Cl is $\left[\hat{\beta_{0}}+\hat{\beta_{1}} x^{*}+/-t_{n-2 ; 1-\alpha / 2} s^{*}\right]$, where

$$
s^{*}=s \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

- Predictions are valid in the range of $\left(x_{i}\right)$'s.
- The precision varies according to the x^{*} value you want to predict:

Multiple linear regression

- Natural extension when several $\left(X_{j}\right)_{j=1 \ldots p}$ are used to explain Y.

Multiple linear regression

- Natural extension when several $\left(X_{j}\right)_{j=1 \ldots p}$ are used to explain Y.
- Model simply writes: $Y=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{j}+\epsilon$. In matrix notations with obvious generalisation: $Y=X \beta+\epsilon$.

Multiple linear regression

- Natural extension when several $\left(X_{j}\right)_{j=1 \ldots p}$ are used to explain Y.
- Model simply writes: $Y=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{j}+\epsilon$. In matrix notations with obvious generalisation: $Y=X \beta+\epsilon$.
- $x=\left(x_{i}^{j}\right)_{i, j}$ is the observed design matrix.

Multiple linear regression

- Natural extension when several $\left(X_{j}\right)_{j=1 \ldots p}$ are used to explain Y.
- Model simply writes: $Y=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{j}+\epsilon$. In matrix notations with obvious generalisation: $Y=X \beta+\epsilon$.
- $x=\left(x_{i}^{j}\right)_{i, j}$ is the observed design matrix.
- Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\operatorname{Rank}(X)=p+1$. This is equivalent to ${ }^{\top} X X$ being invertible.

Multiple linear regression

- Natural extension when several $\left(X_{j}\right)_{j=1 \ldots p}$ are used to explain Y.
- Model simply writes: $Y=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{j}+\epsilon$. In matrix notations with obvious generalisation: $Y=X \beta+\epsilon$.
- $x=\left(x_{i}^{j}\right)_{i, j}$ is the observed design matrix.
- Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\operatorname{Rank}(X)=p+1$. This is equivalent to ${ }^{\top} X X$ being invertible.
- Parameter estimation: $\operatorname{argmin}_{\beta} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} \beta_{j} x_{i}^{j}-\beta_{0}\right)^{2} \Leftrightarrow$ $\operatorname{argmin}_{\beta} \sum_{i} \hat{\epsilon}_{i}^{2} \Leftrightarrow \operatorname{argmin}_{\beta}\|Y-X \beta\|_{2}^{2}$.

Multiple linear regression

- Natural extension when several $\left(X_{j}\right)_{j=1 \ldots p}$ are used to explain Y.
- Model simply writes: $Y=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{j}+\epsilon$. In matrix notations with obvious generalisation: $Y=X \beta+\epsilon$.
- $x=\left(x_{i}^{j}\right)_{i, j}$ is the observed design matrix.
- Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\operatorname{Rank}(X)=p+1$. This is equivalent to ${ }^{\top} X X$ being invertible.
- Parameter estimation: $\operatorname{argmin}_{\beta} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} \beta_{j} x_{i}^{j}-\beta_{0}\right)^{2} \Leftrightarrow$ $\operatorname{argmin}_{\beta} \sum_{i} \hat{\epsilon}_{i}^{2} \Leftrightarrow \operatorname{argmin}_{\beta}\|Y-X \beta\|_{2}^{2}$.
- Theorem The Least Square Estimator of β is $\hat{\beta}=\left({ }^{\top} X X\right)^{-1}{ }^{\top} X Y$.

Properties of the least square estimate

Theorem
The estimator $\hat{\beta}$ previously defined is s.t.

1. $\hat{\beta} \sim \mathcal{N}\left(\beta, \sigma^{2}\left({ }^{\top} X X\right)^{-1}\right)$ and
2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.

Properties of the least square estimate

Theorem
The estimator $\hat{\beta}$ previously defined is s.t.

1. $\hat{\beta} \sim \mathcal{N}\left(\beta, \sigma^{2}\left({ }^{\top} X X\right)^{-1}\right)$ and
2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.

- few control on σ^{2}. So the structure of ${ }^{\top} X X$ dictates the quality of estimator $\hat{\beta}$: optimal experimental design subject.

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

1. $\hat{\beta} \sim \mathcal{N}\left(\beta, \sigma^{2}\left({ }^{\top} X X\right)^{-1}\right)$ and
2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.

- few control on σ^{2}. So the structure of ${ }^{\top} X X$ dictates the quality of estimator $\hat{\beta}$: optimal experimental design subject.

Theorem

$\hat{Y}=X \hat{\beta}:$ predicted values. Then $\hat{Y}=H Y$, with $H=X\left({ }^{\top} X X\right)^{-1}{ }^{\top} X$; $\epsilon=Y-\hat{Y}=(I d-H) Y$. Note that H is the orthogonal projection on $\operatorname{Vect}(X) \subset \mathbb{R}^{n}$. We have:

1. $\operatorname{Cov}(\hat{Y})=\sigma^{2} H$,
2. $\operatorname{Cov}(\epsilon)=\sigma^{2}(I d-H)$ and
3. $\hat{\sigma^{2}}=\frac{\left\|\epsilon^{2}\right\|}{n-p-1}$.

Practical uses

- Cl for $\beta_{j}:\left[\hat{\beta}_{j}+/-t_{n-p-1 ; 1-\alpha / 2} \sigma_{\hat{\beta}_{j}}\right]$, with $t_{n-p-1 ; 1-\alpha / 2}$ a Student-quantile and $\sigma_{\hat{\beta}_{j}}$ the squareroot of the $j^{\text {th }}$ element of $\operatorname{Cov}(\hat{\beta})$.

Practical uses

- CI for $\beta_{j}:\left[\hat{\beta}_{j}+/-t_{n-p-1 ; 1-\alpha / 2} \sigma_{\hat{\beta}_{j}}\right]$, with $t_{n-p-1 ; 1-\alpha / 2}$ a Student-quantile and $\sigma_{\hat{\beta}_{j}}$ the squareroot of the $j^{\text {th }}$ element of $\operatorname{Cov}(\hat{\beta})$.
- Tests on β_{j} : the rv $\frac{\hat{\beta_{j}-\beta_{j}}}{\sigma_{\beta_{j}}}$ has a Student distribution.

Practical uses

- CI for $\beta_{j}:\left[\hat{\beta}_{j}+/-t_{n-p-1 ; 1-\alpha / 2} \sigma_{\hat{\beta}_{j}}\right]$, with $t_{n-p-1 ; 1-\alpha / 2}$ a Student-quantile and $\sigma_{\hat{\beta}_{j}}$ the squareroot of the $j^{\text {th }}$ element of $\operatorname{Cov}(\hat{\beta})$.
- Tests on β_{j} : the rv $\frac{\hat{\beta_{j}}-\beta_{j}}{\sigma_{\beta_{j}}}$ has a Student distribution.
- Confidence region for $\beta=\left(\beta_{0} \ldots \beta_{p}\right)$:
$R_{1-\alpha}(\beta)=\left\{\left.z \in \mathbb{R}^{p+1}\right|^{\top}(z-\hat{\beta})^{\top} X X(z-\hat{\beta}) \leq(p+1) s^{2} f_{k ; n-p-1 ; 1-\alpha}\right\}$.
It is an ellipsoid centred on $\hat{\beta}$ with volume, shape and orientation depending upon ${ }^{\top} X X$.

Practical uses

- CI for $\beta_{j}:\left[\hat{\beta}_{j}+/-t_{n-p-1 ; 1-\alpha / 2} \sigma_{\hat{\beta}_{j}}\right]$, with $t_{n-p-1 ; 1-\alpha / 2}$ a Student-quantile and $\sigma_{\hat{\beta}_{j}}$ the squareroot of the $j^{\text {th }}$ element of $\operatorname{Cov}(\hat{\beta})$.
- Tests on β_{j} : the rv $\frac{\hat{\beta_{j}}-\beta_{j}}{\sigma_{\beta_{j}}}$ has a Student distribution.
- Confidence region for $\beta=\left(\beta_{0} \ldots \beta_{p}\right)$:
$R_{1-\alpha}(\beta)=\left\{\left.z \in \mathbb{R}^{p+1}\right|^{\top}(z-\hat{\beta})^{\top} X X(z-\hat{\beta}) \leq(p+1) s^{2} f_{k ; n-p-1 ; 1-\alpha}\right\}$.
It is an ellipsoid centred on $\hat{\beta}$ with volume, shape and orientation depending upon ${ }^{\top} X X$.
- Cl for previsions on y^{*} :

$$
\left[y^{*}+/-t_{n-p-1 ; 1-\alpha / 2} s\left(1+^{\top} x^{*}\left({ }^{\top} X X\right)^{-1}\right)^{1 / 2}\right]
$$

Usual diagnosis

- residual plot: variance homogeneity (weights can be used if not), model validation...

Usual diagnosis

- residual plot: variance homogeneity (weights can be used if not), model validation...
- QQ-plots: to detect outliers ...

Usual diagnosis

- residual plot: variance homogeneity (weights can be used if not), model validation...
- QQ-plots: to detect outliers ...
- model selection. R^{2} for model with same number of regressors. $R_{\text {adj }}^{2}=\frac{(n-1) R^{2}-(p-1)}{n-p}$. Maximising $R_{\text {adj }}^{2}$ is equivalent to maximising the mean quadratic error.

Usual diagnosis

- residual plot: variance homogeneity (weights can be used if not), model validation. .
- QQ-plots: to detect outliers ...
- model selection. R^{2} for model with same number of regressors. $R_{\text {adj }}^{2}=\frac{(n-1) R^{2}-(p-1)}{n-p}$. Maximising $R_{\text {adj }}^{2}$ is equivalent to maximising the mean quadratic error.
- test by ANOVA: $F=\frac{S S R / p}{S S E /(n-p-1)}$ has a Fisher distribution with $p,(n-p-1) \mathrm{df}$. Since testing (H 0$) \beta_{1}=\ldots=\beta_{p}=0$ has little interest (rejected asa one of the variable is linked to Y), one can test (H^{\prime} ') $\beta_{i_{1}}=\ldots=\beta_{i_{q}}=0$, with $q<p$ and $\frac{\left(S S R-S S R_{q}\right) / q}{S S E /(n-p-1)}$ has a Fisher distribution with $q,(n-p-1) \mathrm{df}$.

Usual diagnosis

- residual plot: variance homogeneity (weights can be used if not), model validation. . .
- QQ-plots: to detect outliers ...
- model selection. R^{2} for model with same number of regressors. $R_{\text {adj }}^{2}=\frac{(n-1) R^{2}-(p-1)}{n-p}$. Maximising $R_{\text {adj }}^{2}$ is equivalent to maximising the mean quadratic error.
- test by ANOVA: $F=\frac{S S R / p}{S S E /(n-p-1)}$ has a Fisher distribution with $p,(n-p-1) \mathrm{df}$. Since testing (H0) $\beta_{1}=\ldots=\beta_{p}=0$ has little interest (rejected asa one of the variable is linked to Y), one can test $\left(\mathrm{H}^{\prime}\right) \beta_{i_{1}}=\ldots=\beta_{i_{q}}=0$, with $q<p$ and $\frac{\left(S S R-S S R_{q}\right) / q}{S S E /(n-p-1)}$ has a Fisher distribution with $q,(n-p-1) \mathrm{df}$.
- Application: variable selection for model interpretation: backward (remove 1 by 1 least significative with t-test), forward (include 1 by 1 most significative with F-test), stepwise (variant of forward).

Collinearity and model selection

- detecting colinearity between the $x_{i}{ }^{\prime}$ s. Inverting ${ }^{\top} X X$ if $\operatorname{det}\left({ }^{\top} X X\right) \approx 0$ is difficult. Moreover, the inverse will have a huge variance!

Collinearity and model selection

- detecting colinearity between the $x_{i}{ }^{\prime}$ s. Inverting ${ }^{\top} X X$ if $\operatorname{det}\left({ }^{\top} X X\right) \approx 0$ is difficult. Moreover, the inverse will have a huge variance!
- to detect collinearity, compute $\operatorname{VIF}\left(x_{j}\right)=\frac{1}{1-R_{j}^{2}}$, with R_{j}^{2} the determination coefficient of x_{j} regressed againt $x \backslash\left\{x_{j}\right\}$. Perfect orthogonality is $\operatorname{VIF}\left(x_{j}\right)=1$ and the stronger the collinearity, the larger the value for $\operatorname{VIF}\left(x_{j}\right)$.

Collinearity and model selection

- detecting colinearity between the $x_{i}{ }^{\prime}$ s. Inverting ${ }^{\top} X X$ if $\operatorname{det}\left({ }^{\top} X X\right) \approx 0$ is difficult. Moreover, the inverse will have a huge variance!
- to detect collinearity, compute $\operatorname{VIF}\left(x_{j}\right)=\frac{1}{1-R_{j}^{2}}$, with R_{j}^{2} the determination coefficient of x_{j} regressed againt $x \backslash\left\{x_{j}\right\}$. Perfect orthogonality is $\operatorname{VIF}\left(x_{j}\right)=1$ and the stronger the collinearity, the larger the value for $\operatorname{VIF}\left(x_{j}\right)$.
- Ridge regression introduces a bias but reduces the variance (keeps all variables). Lasso regression does the same but also does a selection on variables. Issue here: penalty term to tune...

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

- Multiple output regression $Y=X B+E, Y i n \mathrm{M}(n, K)$ and $X \in \mathrm{M}(n, p)$ so $R S S(B)=\operatorname{Tr}\left({ }^{\top}(Y-X B)(Y-X B)\right)$
(column-wise) or $\sum_{i}{ }^{\top}\left(y_{i}-x_{i, .} B\right) \Sigma^{-1}\left(y_{i}-x_{i, .} B\right)$, with $\Sigma=\operatorname{Cov}(\epsilon)$ (correlated errors).

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

- Multiple output regression $Y=X B+E, Y i n \mathrm{M}(n, K)$ and $X \in \mathrm{M}(n, p)$ so $R S S(B)=\operatorname{Tr}\left({ }^{\top}(Y-X B)(Y-X B)\right)$
(column-wise) or $\sum_{i}{ }^{\top}\left(y_{i}-x_{i, .} B\right) \Sigma^{-1}\left(y_{i}-x_{i,} B\right)$, with $\Sigma=\operatorname{Cov}(\epsilon)$ (correlated errors).

- Curvilinear models are of the form

$$
Y=\beta_{0}+\sum_{j} \beta_{j} x^{j}+\sum_{k, l} \beta_{k, l} x^{k} x^{l}+\epsilon
$$

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

- Multiple output regression $Y=X B+E, Y i n \mathrm{M}(n, K)$ and $X \in \mathrm{M}(n, p)$ so $R S S(B)=\operatorname{Tr}\left({ }^{\top}(Y-X B)(Y-X B)\right)$
(column-wise) or $\sum_{i}^{\top}\left(y_{i}-x_{i, .} B\right) \Sigma^{-1}\left(y_{i}-x_{i, .} B\right)$, with $\Sigma=\operatorname{Cov}(\epsilon)$ (correlated errors).

- Curvilinear models are of the form

$$
Y=\beta_{0}+\sum_{j} \beta_{j} x^{j}+\sum_{k, l} \beta_{k, l} x^{k} x^{l}+\epsilon .
$$

- Non-linear (parametric) regression has the form $Y=f(x ; \theta)+\epsilon$. Examples include exponential or logistic models.

Today's session is over

Next time: A practical R session to be studied by you!

