Statistics and learning Regression

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

Wednesday 6th November 2013

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X;\beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \ldots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X;\beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \ldots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

▶ Goal: from n experimental observations (x_i, y_i) , we aim at

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X;\beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \ldots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - estimating unknown $(\beta_l)_{l=1...k}$,

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X;\beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \ldots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - estimating unknown $(\beta_l)_{l=1...k}$,
 - evaluating the fitness of the model

- expresses a random variable Y as a function of random variables $X \in \mathbb{R}^p$ according to:

$$Y = f(X;\beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \ldots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - estimating unknown $(\beta_l)_{l=1...k}$,
 - evaluating the **fitness** of the model
 - if the fit is acceptable, tests on parameters can be performed and the model can be used for predictions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

► A single explanatory variable X and an affine relationship to the dependant variable Y:

$$E[Y \mid X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

► A single explanatory variable X and an affine relationship to the dependant variable Y:

$$E[Y \mid X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

► **Residuals** ϵ_i are assumed to be centred (R1), have equal variances $(= \sigma^2, R2)$ and be uncorrelated: $Cov(\epsilon_i, \epsilon_j) = 0, \quad \forall i \neq j$ (R3).

► A single explanatory variable X and an affine relationship to the dependant variable Y:

$$E[Y \mid X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

- ▶ **Residuals** ϵ_i are assumed to be centred (R1), have equal variances $(=\sigma^2, R2)$ and be uncorrelated: $Cov(\epsilon_i, \epsilon_j) = 0$, $\forall i \neq j$ (R3).
- ► Hence: $E[Y_i] = \beta_0 + \beta_1 x_i$, $Var(Y_i) = \sigma^2$ and $Cov(Y_i, Y_j) = 0$, $\forall i \neq j$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

► A single explanatory variable X and an affine relationship to the dependant variable Y:

$$E[Y \mid X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

- ▶ **Residuals** ϵ_i are assumed to be centred (R1), have equal variances $(=\sigma^2, R2)$ and be uncorrelated: $Cov(\epsilon_i, \epsilon_j) = 0$, $\forall i \neq j$ (R3).
- ► Hence: $E[Y_i] = \beta_0 + \beta_1 x_i$, $Var(Y_i) = \sigma^2$ and $Cov(Y_i, Y_j) = 0$, $\forall i \neq j$.
- Fitting (or adjusting) the model = estimate β_0 , β_1 and σ from the *n*-sample (x_i, y_i) .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Least square estimate

• Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum [y_i - (\beta_0 + \beta_1 x_i)]^2$$

2013

4 / 15

Least square estimate

• Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Note that *Y* and *X* do not play a symetric role !

∃ ► < ∃ ►</p>

Least square estimate

• Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Note that *Y* and *X* do not play a symetric role !

► In matrix notation (useful later): $Y = X.B + \epsilon$, with $Y = {^{\top}(Y_1 \dots Y_n)}, B = {^{\top}(\beta_0, \beta_1)}, \epsilon = {^{\top}(\epsilon_1 \dots \epsilon_n)}$ and $X = {^{\top}\begin{pmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{pmatrix}}.$ E. Rachelson & M. Vignes (ISAE) SAD 2013 4/15

Estimator properties

• useful notations: $\bar{x} = 1/n \sum_{i} x_{i}$, \bar{y} , s_{x}^{2} , s_{y}^{2} and $s_{xy} = 1/(n-1) \sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})$.

Estimator properties

- ► useful notations: $\bar{x} = 1/n \sum_i x_i$, \bar{y} , s_x^2 , s_y^2 and $s_{xy} = 1/(n-1) \sum_i (x_i \bar{x})(y_i \bar{y})$.
- Linear correlation coefficient: $r_{xy} = \frac{s_{xy}}{s_x s_y}$.

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Estimator properties

► useful notations: $\bar{x} = 1/n \sum_i x_i$, \bar{y} , s_x^2 , s_y^2 and $s_{xy} = 1/(n-1) \sum_i (x_i - \bar{x})(y_i - \bar{y})$.

• Linear correlation coefficient: $r_{xy} = \frac{s_{xy}}{s_x s_y}$.

Theorem

- 1. Least Square estimators are $\hat{\beta_1} = s_{xy}/s_x^2$ and $\hat{\beta_0} = \bar{y} \hat{\beta_1}\bar{x}$.
- 2. These estimators are unbiased and efficient.
- 3. $s^2 = \frac{1}{n-2} \sum_i \left[y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i) \right]^2$ is an unbiased estimator of σ^2 . It is however not efficient.

4.
$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{(n-1)s_x^2}$$
 and $\operatorname{Var}(\hat{\beta}_0) = \bar{x}^2 \operatorname{Var}(\hat{\beta}_1) + \sigma^2/n$

E. Rachelson & M. Vignes (ISAE)

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simple Gaussian linear model

In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') ∀i ≠ j, ε_i and ε_j independent and (R4) ∀i, ε_i ~ N(0, σ²) or equivalently y_i ~ N(β₀ + β₁x_i, σ²).

Simple Gaussian linear model

- In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') ∀i ≠ j, ε_i and ε_j independent and (R4) ∀i, ε_i ~ N(0, σ²) or equivalently y_i ~ N(β₀ + β₁x_i, σ²).
- Theorem: under (R1, R2, R3' and R4), Least Square estimators = MLE.

Simple Gaussian linear model

- In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') ∀i ≠ j, ε_i and ε_j independent and (R4) ∀i, ε_i ~ N(0, σ²) or equivalently y_i ~ N(β₀ + β₁x_i, σ²).
- Theorem: under (R1, R2, R3' and R4), Least Square estimators = MLE.

Theorem (Distribution of estimators)

1.
$$\hat{\beta}_0 \sim \mathcal{N}(\beta_0, \sigma_{\hat{\beta}_0}^2)$$
 and $\hat{\beta}_1 \sim \mathcal{N}(\beta_0, \sigma_{\hat{\beta}_1}^2)$, with
 $\sigma_{\hat{\beta}_0}^2 = \sigma^2 \left(\bar{x}^2 / \sum_i (x_i - \bar{x})^2 + 1/n\right)$ and $\sigma_{\hat{\beta}_1}^2 = \sigma^2 / \sum_i (x_i - \bar{x})^2$
2. $(n-2)s^2/\sigma^2 \sim \chi_{n-2}^2$
3. $\hat{\beta}_0$ and $\hat{\beta}_1$ are independent of $\hat{\epsilon}_i$.
4. Estimators of $\sigma_{\hat{\beta}_0}^2$ and $\sigma_{\hat{\beta}_1}^2$ are given in 1. by replacing σ^2 by s^2 .

• Previous theorem allows us to build CI for β_0 and β_1 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Previous theorem allows us to build CI for β_0 and β_1 .
- ► SST/n = SSR/n + SSE/n, with $SST = \sum_i (y_i \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y}_i \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i \bar{y}_i)^2$ (sum of squared errors).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- Previous theorem allows us to build CI for β_0 and β_1 .
- ► SST/n = SSR/n + SSE/n, with $SST = \sum_i (y_i \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y}_i \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i \bar{y}_i)^2$ (sum of squared errors).
- ▶ Definition: Determination coefficient $R^2 = \frac{\sum_i (\hat{y_i} - \bar{y})^2}{\sum_i (y_i - \bar{y})^2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{\text{Residual Variance}}{\text{Total variance}}.$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Previous theorem allows us to build CI for β_0 and β_1 .
- ► SST/n = SSR/n + SSE/n, with $SST = \sum_i (y_i \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y}_i \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i \bar{y}_i)^2$ (sum of squared errors).
- ▶ Definition: Determination coefficient $R^2 = \frac{\sum_i (\hat{y}_i - \bar{y})^2}{\sum_i (y_i - \bar{y})^2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{\text{Residual Variance}}{\text{Total variance}}.$

• Given a new x^* , what is the prediction \tilde{y} ?

2013

8 / 15

- Given a new x^* , what is the prediction \tilde{y} ?
- It's simply $\widehat{y(x^*)} = \hat{\beta}_0 + \hat{\beta}_1 x^*$. But what is its precision ?

- \blacktriangleright Given a new $x^*,$ what is the prediction \tilde{y} ?
- It's simply $\widehat{y(x^*)} = \hat{\beta_0} + \hat{\beta_1}x^*$. But what is its precision ?

► Its CI is
$$\left[\hat{\beta}_0 + \hat{\beta}_1 x^* + / - t_{n-2;1-\alpha/2} s^*\right]$$
, where $s^* = s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- \blacktriangleright Given a new $x^*,$ what is the prediction \tilde{y} ?
- It's simply $\widehat{y(x^*)} = \hat{\beta_0} + \hat{\beta_1}x^*$. But what is its precision ?

► Its CI is
$$\left[\hat{\beta}_0 + \hat{\beta}_1 x^* + / -t_{n-2;1-\alpha/2} s^*\right]$$
, where $s^* = s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}$.

• Predictions are valid in the range of (x_i) 's.

- Given a new x^* , what is the prediction \tilde{y} ?
- ► It's simply $\widehat{y(x^*)} = \hat{\beta}_0 + \hat{\beta}_1 x^*$. But what is its precision ?

► Its CI is
$$\left[\hat{\beta}_0 + \hat{\beta}_1 x^* + / - t_{n-2;1-\alpha/2} s^*\right]$$
, where $s^* = s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}$.

- Predictions are valid in the range of (x_i) 's.
- The precision varies according to the x^* value you want to predict:

8 / 15

▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- $x = (x_i^j)_{i,j}$ is the observed **design matrix**.

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- Identifiability of β is equivalent to the linear independence of the columns of x *i.e.* Rank(X) = p + 1. This is equivalent to [⊤]XX being invertible.

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- Identifiability of β is equivalent to the linear independence of the columns of x i.e. Rank(X) = p + 1. This is equivalent to [⊤]XX being invertible.
- ► Parameter estimation: $\operatorname{argmin}_{\beta} \sum_{i=1}^{n} \left(y_i \sum_{j=1}^{p} \beta_j x_i^j \beta_0 \right)^2 \Leftrightarrow \operatorname{argmin}_{\beta} \sum_i \hat{\epsilon_i}^2 \Leftrightarrow \operatorname{argmin}_{\beta} ||Y X\beta||_2^2.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Natural extension when several $(X_i)_{i=1...p}$ are used to explain Y.
- Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- Identifiability of β is equivalent to the linear independence of the columns of x *i.e.* $\operatorname{Rank}(X) = p + 1$. This is equivalent to $^{\top}XX$ being invertible.
- ► Parameter estimation: $\operatorname{argmin}_{\beta} \sum_{i=1}^{n} \left(y_i \sum_{j=1}^{p} \beta_j x_i^j \beta_0 \right)^2 \Leftrightarrow$ $\operatorname{argmin}_{\beta} \sum_{i} \hat{\epsilon}_{i}^{2} \Leftrightarrow \operatorname{argmin}_{\beta} \|Y - X\beta\|_{2}^{2}$
- ▶ **Theorem** The Least Square Estimator of β is $\hat{\beta} = (^{\top}XX)^{-1} {}^{\top}XY$.

2013

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

- 1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(^\top XX)^{-1})$ and
- 2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.

* E + * E +

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

- 1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(^\top XX)^{-1})$ and
- 2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.
- Few control on σ². So the structure of ^TX X dictates the quality of estimator β̂: optimal experimental design subject.

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

- 1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(^\top XX)^{-1})$ and
- 2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.
- Few control on σ². So the structure of [⊤]X X dictates the quality of estimator β̂: optimal experimental design subject.

Theorem

 $\hat{Y} = X\hat{\beta}$: predicted values. Then $\hat{Y} = HY$, with $H = X (^{\top}X X)^{-1 \top}X$; $\epsilon = Y - \hat{Y} = (Id - H)Y$. Note that H is the orthogonal projection on $\operatorname{Vect}(X) \subset \mathbb{R}^n$. We have: 1. $\operatorname{Cov}(\hat{Y}) = \sigma^2 H$, 2. $\operatorname{Cov}(\epsilon) = \sigma^2 (Id - H)$ and 3. $\hat{\sigma^2} = \frac{\|\epsilon^2\|}{n-n-1}$.

E. Rachelson & M. Vignes (ISAE)

 Cl for β_j: [β_j + / −t_{n-p-1;1-α/2}σ_{β_j}], with t_{n-p-1;1-α/2} a Student-quantile and σ_{β_j} the squareroot of the jth element of Cov(β).

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Cl for β_j: [β_j + / −t_{n-p-1;1-α/2}σ_{β_j}], with t_{n-p-1;1-α/2} a Student-quantile and σ_{β_j} the squareroot of the jth element of Cov(β).
- ► Tests on β_j : the rv $\frac{\hat{\beta}_j \beta_j}{\sigma_{\hat{\beta}_j}}$ has a Student distribution.

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Cl for β_j: [β_j + / −t_{n-p-1;1-α/2}σ_{β_j}], with t_{n-p-1;1-α/2} a Student-quantile and σ_{β_j} the squareroot of the jth element of Cov(β).
- ► Tests on β_j : the rv $\frac{\hat{\beta}_j \beta_j}{\sigma_{\hat{\beta}_j}}$ has a Student distribution.
- Confidence region for $\beta = (\beta_0 \dots \beta_p)$:

$$R_{1-\alpha}(\beta) = \left\{ z \in \mathbb{R}^{p+1} | {}^{\top}(z-\hat{\beta}) {}^{\top}X X (z-\hat{\beta}) \le (p+1)s^2 f_{k;n-p-1;1-\alpha} \right\}.$$

It is an ellipsoid centred on $\hat{\beta}$ with volume, shape and orientation depending upon ${}^{\top}X\,X.$

イロト イポト イヨト イヨト 二日

- Cl for β_j: [β_j + / −t_{n-p-1;1-α/2}σ_{β_j}], with t_{n-p-1;1-α/2} a Student-quantile and σ_{β_j} the squareroot of the jth element of Cov(β).
- ► Tests on β_j : the rv $\frac{\hat{\beta}_j \beta_j}{\sigma_{\hat{\beta}_j}}$ has a Student distribution.
- Confidence region for $\beta = (\beta_0 \dots \beta_p)$:

$$R_{1-\alpha}(\beta) = \left\{ z \in \mathbb{R}^{p+1} | {}^{\top}(z-\hat{\beta}) {}^{\top}X X (z-\hat{\beta}) \le (p+1)s^2 f_{k;n-p-1;1-\alpha} \right\}.$$

It is an ellipsoid centred on $\hat{\beta}$ with volume, shape and orientation depending upon ${}^{\top}X\,X.$

• CI for previsions on y^* :

$$[y^* + / -t_{n-p-1;1-\alpha/2}s\left(1 + {}^{\top}x^*({}^{\top}XX)^{-1}\right)^{1/2}].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

residual plot: variance homogeneity (weights can be used if not), model validation...

2013

12 / 15

- residual plot: variance homogeneity (weights can be used if not), model validation...
- ► QQ-plots: to detect outliers

- residual plot: variance homogeneity (weights can be used if not), model validation...
- ► QQ-plots: to detect outliers
- ▶ model selection. R^2 for model with same number of regressors. $R^2_{adj} = \frac{(n-1)R^2 - (p-1)}{n-p}$. Maximising R^2_{adj} is equivalent to maximising the mean quadratic error.

・何ト イヨト イヨト ニヨ

- residual plot: variance homogeneity (weights can be used if not), model validation...
- ► QQ-plots: to detect outliers
- ▶ model selection. R^2 for model with same number of regressors. $R^2_{adj} = \frac{(n-1)R^2 - (p-1)}{n-p}$. Maximising R^2_{adj} is equivalent to maximising the mean quadratic error.
- ► test by ANOVA: F = SSR/p / SSE/(n-p-1) has a Fisher distribution with p, (n p 1) df. Since testing (H0) β₁ = ... = β_p = 0 has little interest (rejected as one of the variable is linked to Y), one can test (H0') β_{i1} = ... = β_{iq} = 0, with q q</sub>)/q / SSE/(n-p-1) has a Fisher distribution with q, (n p 1) df.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- residual plot: variance homogeneity (weights can be used if not), model validation...
- ► QQ-plots: to detect outliers
- ▶ model selection. R^2 for model with same number of regressors. $R^2_{adj} = \frac{(n-1)R^2 - (p-1)}{n-p}$. Maximising R^2_{adj} is equivalent to maximising the mean quadratic error.
- ► test by ANOVA: F = SSR/p / SSE/(n-p-1) has a Fisher distribution with p, (n p 1) df. Since testing (H0) β₁ = ... = β_p = 0 has little interest (rejected as one of the variable is linked to Y), one can test (H0') β_{i1} = ... = β_{iq} = 0, with q q</sub>)/q / SSE/(n-p-1) has a Fisher distribution with q, (n p 1) df.
- Application: variable selection for model interpretation: backward (remove 1 by 1 least significative with t-test), forward (include 1 by 1 most significative with F-test), stepwise (variant of forward).

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Collinearity and model selection

► detecting colinearity between the x_i's. Inverting ^TX X if det(^TX X) ≈ 0 is difficult. Moreover, the inverse will have a huge variance !

イロト イポト イヨト イヨト

Collinearity and model selection

- ► detecting colinearity between the x_i's. Inverting ^TX X if det(^TX X) ≈ 0 is difficult. Moreover, the inverse will have a huge variance !
- ► to detect collinearity, compute VIF(x_j) = 1/(1-R_j²), with R_j² the determination coefficient of x_j regressed againt x \ {x_j}. Perfect orthogonality is VIF(x_j) = 1 and the stronger the collinearity, the larger the value for VIF(x_j).

イロト イポト イヨト イヨト 二日

Collinearity and model selection

- ► detecting colinearity between the x_i's. Inverting ^TX X if det(^TX X) ≈ 0 is difficult. Moreover, the inverse will have a huge variance !
- ► to detect collinearity, compute VIF(x_j) = 1/(1-R_j²), with R_j² the determination coefficient of x_j regressed againt x \ {x_j}. Perfect orthogonality is VIF(x_j) = 1 and the stronger the collinearity, the larger the value for VIF(x_j).
- Ridge regression introduces a bias but reduces the variance (keeps all variables). Lasso regression does the same but also does a selection on variables. Issue here: penalty term to tune...

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

► Multiple output regression Y = XB + E, Y inM(n, K) and $X \in M(n, p)$ so $RSS(B) = Tr(^{\top}(Y - XB)(Y - XB))$ (column-wise) or $\sum_{i}^{\top}(y_i - x_{i,.}B)\Sigma^{-1}(y_i - x_{i,.}B)$, with $\Sigma = Cov(\epsilon)$ (correlated errors).

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

► Multiple output regression Y = XB + E, Y inM(n, K) and $X \in M(n, p)$ so $RSS(B) = Tr(^{\top}(Y - XB)(Y - XB))$ (column-wise) or $\sum_{i}^{\top}(y_i - x_{i,.}B)\Sigma^{-1}(y_i - x_{i,.}B)$, with $\Sigma = Cov(\epsilon)$ (correlated errors).

Curvilinear models are of the form

$$Y = \beta_0 + \sum_j \beta_j x^j + \sum_{k,l} \beta_{k,l} x^k x^l + \epsilon.$$

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

► Multiple output regression Y = XB + E, Y inM(n, K) and $X \in M(n, p)$ so $RSS(B) = Tr(^{\top}(Y - XB)(Y - XB))$ (column-wise) or $\sum_{i}^{\top}(y_i - x_{i,.}B)\Sigma^{-1}(y_i - x_{i,.}B)$, with $\Sigma = Cov(\epsilon)$ (correlated errors).

Curvilinear models are of the form

$$Y = \beta_0 + \sum_j \beta_j x^j + \sum_{k,l} \beta_{k,l} x^k x^l + \epsilon.$$

► Non-linear (parametric) regression has the form Y = f(x; θ) + ε. Examples include exponential or logistic models.

E. Rachelson & M. Vignes (ISAE)

Today's session is over

Next time: A practical R session to be studied by you !

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A