A Simulation-based Approach for Solving
Generalized Semi-Markov Decision Processes

Emmanuel RachelsépPatrick Fabiari, Frédérick Garcig and
Gauthier Quesnél

1 ONERA-DCSD
2, avenue Edouard Belin, 31055 Toulouse
emmanuel . rachel son, patrick. fabi ani @nera. fr

2 INRA-BIA
Chemin de Borde Rouge, 31326 Castanet-Tolosan
gaut hi er. quesnel, fgarcia@oul ouse.inra.fr

Résumé : Time is a crucial variable in planning and often requirescial at-
tention since it introduces a specific structure along wittittonal complexity,
especially in the case of decision under uncertainty. i phiper, after reviewing
and comparing MDP frameworks designed to deal with tempmalems, we
focus on Generalized Semi-Markov Decision Processes (GSMith obser-
vable time. We highlight the inherent structure and comipjeof these problems
and present the differences with classical reinforcemeautning problems. Fi-
nally, we introduce a new simulation-based reinforcemeatriing method for
solving GSMDP, bringing together results from simulattmased policy itera-
tion, regression techniques and simulation theory. Westilate our approach on
a subway network control example.

1 Introduction

Many problems in planning present both the features of @mcisnder uncertainty
and time-dependency. Imagine, for instance, having to larexploitation of a sub-
way network, where available actions only consist in intrcidg or removing trains
from service. In this problem, the goal is to maximize the benof passengers going
through the network while minimizing the exploitation castthe subway. Passenger
arrival times, movements going in and out of the trains argsiide delays in the sys-
tem make the outcome of every action uncertain with regattieémext state and the
date of the next decision epoch. On top of that, the flow ofgragsrs and their destina-
tions depend greatly on the time of day. All this defines thellaf problems we try to
capture as Temporal Markov Problems. These problems cow@eavariety of other
applications, as onboard UAV coordination or airport taeeyymanagement, etc.

Problems of decision under uncertainty are commonly mededls Markov Deci-
sion Processes (MDP). Recent work on solving large staieespDP include, for

CAp 2008

example, factored MDP methods, approximate linear progreug, hierarchical ap-
proaches, reinforcement learning, etc. Temporal Mark@bléms, however, have re-
ceived little attention from the planning and machine l@ggrcommunities, even though
simulation seems a promising approach to tackling thedalgmus. This paper presents
formalisation and algorithmic issues about Temporal MarRooblems and proposes
an simulation-based algorithm designed to solve them.dti®se2, we will review the
models adapted from Markov Processes and designed to enttlnd-dependency and
decision making. Building on this first section’s conclusipwe focus on controling
Generalized Semi-MDP (GSMDP). Section 4 presents our idfgoand discusses the
issues and interests of simulation-based approaches fiDBPSWe illustrate our ap-
proach on the subway control example in section 4.3 and adeéh section 5.

2 Temporal Markov Problems

MDP have become a popular model for describing problemsawirphg under uncer-
tainty. Formally, an MDP is composed of a 4-tupteS, A, P,r >, whereS is a coun-
table set of states for the systerhjs the countable set of possible actiofgs’|s, a)
is a probability distribution function providing the tratisn model between states (as
in a Markov Process, but conditioned with the actigrandr(s, a) is a reward value
associated with thés, a) transition, used to build criteria and to evaluate actioms a
policies. Solutions to MDP problems are often giverMerkovian policiest, namely
functions that map current states to actions. One can int@driteria to evaluate these
policies, as the discounted reward criterion given in eiguat. Criteria permit defini-
tion of thevalue function’™ associated with a policy. An important result concerning
MDP is that for any history-dependent policy, there existdarkovian policy which
is at least as good with regard to a given criterion. Consetfyyy@ne can safely seach
for optimal control policies in the restricted space of Marian policies without loss
in optimality. Finally, algorithms agalue iterationor policy iterationare based on the
fact that the optimal policy’s value functidi* obeys Bellman’s optimality equation 2
((Bellman, 1957)).

Vr(s) = E(Zv‘sr(stg,w(&;)) (1)
6=0
Vi(s) = maz lr(s,a)ﬂZP(S’Is,a)V*(s’>)
s'eSs

2.1 Including continuous time in the MDP framework

Introducing time in Markov Processes (MP) models - and irir thecisional coun-
terparts, MDP - can be done by defining stochastic duratiehgd®en decision epochs.
In a standard MP or MDP, the sojourn time in a given state isasmtedecision epochs
occur at integer time values (thus yielding tifein the discounted criterion). Allowing
the sojourn time in a given state to be continuous and stticltedines the Semi-MP, or
Semi-MDP formalism. In an SMDP (Puterman, 1994), statewsojtime is described

through a distributiorf'(7s,) indicating the time before transition, provided that we
undertake action in states. Therefore, an SMDP is a 5-tuple S, A, P, F', » > which
corresponds to a Markov Process but with stochastic stgd@rsotime. Policies for
the control of SMDP can be computed using standard MDP dlguos since solving a
discounted reward SMDP turns out to be equivalent to pelifggran integration over
expected transition durations and to solving a total rewdRP. This is mainly due
to the independence between state sojourn tiraad arrival state’. This very strong
assumption was lifted in the Time-dependent MDP (TMDP) nodéBoyan & Litt-
man, 2001) and generalized recently in the XMDP model of (lREsonet al, 2008).
Formally, an XMDP is described by a 4-tupte S, A, p,» > where the state space
can be composed of discrete and continuous variables andnolaigle the process’
time, A is a continuous or discrete parametric action spacepaarttr correspond to
transition and reward models for statesSond actions ofd. (Rachelsoret al., 2008)
proved that XMDP obeyed a similar optimality equation asagiqun 4, thus proving that
standard algorithms as value iteration could be safely tsadive XMDP. Using the
XMDP representation, one can model any stochastic degmiocess with continuous
observable time and hybrid state and action spaces.

This seems to suit our Temporal Markov Problems well and s@oent techniques
for solving hybrid state space MDP ((Hauskrecht & KvetonQ@0Fenget al,, 2004))
could be applied here. However, writing transition and tarefunctions for Temporal
Markov Problems is often a very complex task and require aflehgineering. For ins-
tance, the effect of &emoveTrain action on the global state of the subway problem
is the result of several concurrent processes : the passangals, the trains move-
ments, the removal of one train, etc. : all compete to changeystem’s state and it is
a complex task to summarize all these process’ concurrectiastic influence into the
transition and duration functions.

2.2 Concurrency and MDP

In the stochastic processes litterature, concurrent Mapkocesses are modelled as
Generalized Semi-Markov Processes (GSMP) (Glynn, 198@SMP is a natural re-
presentation of several concurrent SMP affecting the saate space. (Younes & Sim-
mons, 2004) introduced Generalized Semi-Markov Decisimtésses (GSMDP) in
order to model the problem of decision under uncertaintyrevlaetions compete with
concurrent uncontrolable stochastic events. A GSMDP deessa problem by factoring
the global transition function of the process by the différgtochastic contributions of
concurrent events. This makes GSMDP an elegant and effiw@nbf describing the
complexity of Markov Temporal Problems. We will therefoaefis on solving time-
dependent GSMDP from now on and will give a more formal de@iniof GSMDP in
section 3.

3 GSMP and GSMDP

The previous section illustrated how Temporal Markov Peaid needed both conti-
nuous observable time models and an efficient represemtatiooncurrency in order

CAp 2008

+ continuous
sojourn time -+ concurrency

MP Y smMP Y @sMmp

>+ actions))

MDP > SMDP > GSMDP

FiG. 1 — From MP to GSMDP

to represent the complexity of the phenomenons at stakdidrséction, we focus on
the GSMDP formalism with observable time. We define contadilgies, the associated
state variable issues and present resolution methods.

3.1 Concurrent processes

We start from the stochastic process point of view, with naglen making. Formally,
a GSMP (Glynn, 1989) is described by a sebf states and a séf of events. At any
time, the process is in a statand there exists a subdé of events that are callexttive
or enabled These events represent the different concurrent prog#isasecompete for
the next transition. To each active eventwe associate a clock. representing the
duration before this event triggers a transition. This tlarewould be the sojourn time
in states if evente was the only active event. The everitwith the smallest clock..-
(the first to trigger) is the one that takes the process to astat®. The transition is then
described by the transition model of the triggering evetie: next states’ is picked
according to the probability distributioR.- (s'|s). In the new state’, events that are
not in E, are disabled (which actually implies setting their clocistioc). For the
events ofF,, clocks are updated the following way :

— Ifee Es\ {e*}, thenc, < ¢ — cex

— Ife & Esorif e = e*, pick ¢, according taF, (7|s’)

The first active event to trigger then takes the process tonastate where the above
operations are repeated.

One first important remark concerning GSMP is that the oVgralcess does not
retain Markov’s property anymore : knowing the currentestais not sufficient to pre-
dict the distribution on the next state of the process. @¢ie] 1998) showed that by
augmenting the state space with the events’ clocks, onel cetdin the Semi-Markov
behaviour for a GSMP, we will discuss this issue in the negtige.

Introducing action choice in a GSMP yields a GSMDP as defiggdfounes & Sim-
mons, 2004). In a GSMDP, we identify a subgetf controlable events or actions, the
remaining ones are called uncontrolable or exogeneousseVvartions can be enabled
or disabled at will and the subsdt = AN E, of activable actions is never empty since
it always contains at least the “idle” actian, (whose clock is always seb) which, in
fact, does nothing and lets the first exogeneous event takgrtitess to a new state. As
in the MDP case, searching for control strategies on GSMD#tyidefining rewards
r(s,e) orr(s,e, s') associated to transitions and introducing policies artegai.

3.2 Controling GSMDP

As mentionned before, the transition function for the glatemi-Markov process
does not retain the Markov property without augmenting thésspace. In the clas-
sical MDP framework, one can make use of the Markov propeftthe transition
function to prove that there exists a Markovian policy (Whienly depends on the
current state) which is at least as good as any history-akgrempolicy (Puterman,
1994). In the GSMDP case however, this is no longer possibteia order to de-
fine criteria and to find optimal policies, we need - in the gahease - to allow
the policy to depend on the whoexecution pattof the process. An execution path
(Younes & Simmons, 2004) of length from states, to states,, is a sequence =
(50,t0,€0, 51, - - -5 Sn—1,tn—1, €n—1, Sn) Wheret; is the sojourn time in statg before
evente; triggers. As in (Younes & Simmons, 2004), we define the disted value of
an execution path by :

t;
Zle (Lik(si,ei,sit1) —|—/ vtc(si,ei)dt) (3)
0

wherek andc are traditional SMDP lump sum reward and reward rate funstiand
T, = 27 _o t;- One can then define the expected value of poliap states as the
expectation over all execution paths starting inl" (s) = ET [V (o).

This provides a criterion for evaluating policies. The gsalow to find policies that
maximize this criterion. The main problem here is that itaschto search the space of
history-dependent policies. On the other hand, the supgiany variable technique is
often used to transform non-Markovian processes into Magkoones. It consists in
augmenting the state space with just enough variables sthihdistribution over future
states only depends on the current value of these varidhl@dielsen, 1998), Nielsen
augments the natural stateof the process with all the clock readings and shows that
this operation brings Markov behavior back to the GSMP psec&/e will note this
augmented state spage c) for convenience.

Unfortunately, it is unrealistic to define policies oversthugmented state space since
clock readings contain information about theture of the system. From here, several
options are possible :

— One could decide to sacrifice optimality and to search foodj policies among a

restricted set of policies, say the policies defined on thieeot natural state only.

— One could also search for representation hypothesisithptifyy the GSMDP mo-
del and that make natural state Markovian again.

— One could compute optimal policies on the augmented spateess, ¢) and then
derive a policy on observable variables only.

— Finally, one could search for a setalfservablevariables which retain the Markov
property for the process, for example the set composed afdheal state of the
processs, the duration for which each active eventhas been active; and its
activation state;. We will note this augmented state, 7, s,,)

(Younes & Simmons, 2004) is based on the second option latede. In the next

paragraph, we briefly present this approach and introducesinforcement learning

CAp 2008

method designed to deal with very large state spaces for GSMIth continuous ob-
servable time and that can be adapted to the three othensptio

3.3 Resolution methods

The resolution method for GSMDP proposed by (Younes & Simsn@004) relies
on the memoryless property of the exponential distributibrone approximates all
duration functiong” by phase-type distributions (which are combinations ofosen-
tial distributions), then augmenting the state space vhi¢ghdistribution phases brings
the overall behaviour of the GSMDP back to a Continuous TinigFviwhich can, in
turn, be transformed to a standard discrete time MDP by thtaadeofuniformization
(Puterman, 1994). We refer the reader to (Younes & Simmdit¥ Pfor more details.

We wish not make hypothesis on the distributions that diesdtie dynamics of our
system. On top of that, many problems we want to consideeptasther characteris-
tics such as very large, and sometimes continuous statespHeerefore, we need to
consider methods for policy search that can cope with laydpeith state spaces (yiel-
ding large hybrid trajectory spaces) and observable tirmally, for some aspects of
the problems, the stochastic behaviour might still be verpglex to model formally
while simulators might be readily available (for instanicethe airport taxiway mana-
gement problem, the weather model is not given as probgabditgtribution functions
but as a simulator). In order to deal with such problems we towards reinforcement
learning methods. More specifically, in order to avoid coetgktate space exploration,
we introduce a version of approximate policy iteration vehpolicies are defined and
evaluated on a subset of states and then generalized bysegrdéo the whole state
space. The choice of the subset of states used for evaluatgnded by the simula-
tion of the current policy. We present our algorithm in sectéd.1 and then illustrate
why simulation-based policy iteration is particularly atkd to temporal problems in
section 4.2.

4 Simulation-based approaches

4.1 Algorithm

Our algorithm belongs to the Approximate Policy IteratigkP() family of algo-
rithms. Policy Iteration is an algorithm for solving MDP wehi searches the policy
space in a two-step fashion as illustrated on figure 2. Givpaligy =, at stepn, the
first step consists in computing the valuengf The second step then performs a Bell-
man backup in every state of the state space, thus improkegdlicy. An important
property of policy iteration is its good anytime behavioat any stem, policy ,, will
be at least as good as any previous policy. Policy Iteratsually converges in less ite-
rations than the standard Value Iteration algorithm butsdknger since the evaluation
step is very time consuming. To deal with real problems, ceeds to allow for ap-
proximate policy evaluation (as in (Lagoudakis & Parr, 20@&hce exact computation
is often infeasible. There are few theoretical guaranteesovergence and optimality
of API, as explained in (Munos, 2003).

Policy evaluation: V7™
One-step improvement: 7,41

FIG. 2 — Policy Iteration

The version of simulation-based policy iteration we usdqrers simulations of the
current policyr,, starting from the current state of the process and storesifihets of
states, times and rewards;, t5, r5) obtained. Thus, one execution path yields a value
function over the discrete set of states explored duringikition (equation 3). All the
value functions issued from simulation form a training §&t,v)}, s € S,v € R,
from which we wish to generalize a value functirover all states. The average value
of states in the training set tends t&™ (s) as the number of simulations tends to
+00. One major advantage of policy-driven simulation is tha golicy guides the
exploration of the state space to the states most likely teisited, thus refining the
training set over the states that have the largest probabiflibeing reached by the
policy. A second advantage is that this technique is adaptéarge dimension state
spaces.

Once simulation has provided the set of samples in the sgacaectories, we want
to use it as a training set for a regression method that wilegaize it to the entire state
space. Several approaches to regression based reinfordearaing have been propo-
sed in the machine learning community - methods based os (Eestet al., 2005),
evolutionary functions (Whiteson & Stone, 2006), kernekimoels (Ormoneit & Sen,
2002), etc. - but few have been coupled with policy simutatd/e chose to focus on
support vector machines (SVM) because of their ability todda the large dimension
spaces over which our samples are defined. SVM belong torthigy/faf kernel methods
and can be used for both regression and classification.ifgainstandard SVM over a
given training set corresponds to looking for a hyperplaterpolating the samplesin a
higher dimensional space calléshture spacePractically, SVM take advantage of the
kernel trickto avoid expressing the feature space explicitely. For rdetails on SVM,
we refer the reader to (Vapné al., 1996). In our case, we call, (s) the interpolated
value function of policyr,, .

Finally, while simulation-based exploration and SVM geleation of the value
function are techniques dedicated to improve the evalnatiep of approximate policy
iteration, the third specificity of our algorithm deals withproving the optimization
step. For large and possibly continuous state spaces, itrogvery long or imprac-
ticable to compute the one-step improvement of the polingeed, most of the time,
computing a complete policy is irrelevant since most of thaticy will never be used
for the simulation-based evaluation step. Instead, it irigheasier to compute online
the one-step lookahead best action in the current stateresgect to the stored value
function. More precisely, in a standard MDP, the optimizatstep consists in solving

CAp 2008

equation 4 in every state :

Tt (5) — argmax Qs (5,0) (4)
with : QnJrl(Sa a) = T(Sa a) + Z P(S/|Sv CL)f/n(S, a)
s’es

For continuous state spaces, computing; implies being able to compute integrals
over P andV,,. We wish not make hypothesis on the model used and thereft e
form a discretization for evaluation of the integral. Flgasince the model of is not
necessarily known to the decision maker and since we havawatbr of our system,
we will make a second use of this simulator for the purposevaluating the expected
rewardQ,, 1 (s,a) associated with performing actienin states with respect to value
functionV,, (equation 5). At the end of the evaluation phase, the valnetionV, is
stored and no policy is computed from it. Instead, we immetiisenter a new simula-
tion phase but whenever the poligy, is asked for the action to perform in the current
states it performsonlinethe estimation of alf)-values for state and then choses the
best action to perform. The speed up in the execution of thieypiteration algorithm
is easy to illustrate for discrete state spaces problence sire replaceS| evaluations
of the@-values for policy update by the number of states visitedndusne simulation.
This is especially interesting in the case of Temporal MarRooblems since (as we
will explain in section 4.2) a state is never visited twicenSequently(,, 1 (s, a) is
calculated by simply simulatingy times the application af in s and observing the set
of {(r;, s;)} as in equation 5. Then the policy returns the action whichesponds to
the largest)-value. We call this online instanciation of the policy “ord approximate
policy iteration”.

~ 1 -

Quii(s,0) = = D7 [ri + Va(s))] (5)

=1

Our algorithm, calledbnline Approximate Temporal Policy Iteratigonline-ATPI), is
summarized in algorithm 1.

Note that in algorithm 1s actually denotes the part of the state that is observable
to the policy. This makes online-ATPI adaptable to any ofgbts of policy variables
presented in section 3.2. We tested a version of online-AfRhe natural state of the
process.

4.2 Simulating GSMDP and learning

Simulation is a key aspect of ATPI. The Discrete EVents Satioh theory (DEVS)
of (Zeigler et al,, 2000) provides a general framework for specifying disemtent
dynamic systems. We implemented GSMP and GSMDP extensidhe iVLE multi-
modeling platform (Quesneit al, 2007) based on the DEVS specification ; by doing
so, we take advantage of the DEVS framework’s propertieshvfit our simulation
requirements, namely :

— Event driven simulation and time oriented output.

— The simulation engine deals with simultaneity issues aitld simulation consis-

tency and reproducibility.

Algorithm 1 Online-ATPI
main :
Input : o or Vo, so
loop
TrainingSet «— ()
for ¢ = 1to Ny, do
{(s,v)} — simulatgV, s()
TrainingSet — TrainingSet U {(s,v)}
end for
V «— TrainApproximatofT'rainingSet)
end loop

simulate(V/, so) :
ExecutionPath «— ()
S < 80
while horizon not reachedo
action — ComputePolicys, V)
(s',r) — GSMDPsteps, action)
ExecutionPath «— ExecutionPath U (s',r)
end while
convert execution path to value functiéts, v)} (eqn 3)
return {(s,v)}

ComputePolicy(s, V) :
for a € Ado
Q(Sv a) =0
for j = 11t0 Nsgmpies dO
(s',r) < GSMDPsteps,a)
Q(s,a) — Q(s,a) + 7 +7" 'V (s')
end for

Qls,a) — x—=—0Q(s.0)

end for }

action «— argmax Q(s, a)
acA

return action

— Simulation engines such as the VLE platform (Questall., 2007) are readily

available and built on the same discrete events simulatieort.

— Multi-modelling possibilities, opens the algorithm tdet formalisms than MP.
On top of that, the DEVS formalism allows for experimentalfres definition, which
would permit integration of the whole simulation and plarmioop in a DEVS speci-
fication. We haven’'t used experimental frames yet but pladotso in future versions.

Finally, we have claimed that Temporal Markov Problems @nés: specific struc-
ture that makes the problem both hard to deal with for class@nforcement learning

CAp 2008

algorithms and particularly adapted for online approxenatlicy iteration. More spe-
cifically :

— Most reinforcement learning algorithms deal with diserstite spaces. Some ap-
proaches have been proposed ((Ormoneit & Sen, 2002; Etradt 2005; Haus-
krecht & Kveton, 2006) for dealing with continuous or hybsites but the topic
is still very new. Often, continuous state resolution methdepend strongly on
the representation used and on the ability to calculatgiiate over the probability
functions. Simulation-based sampling approaches propakfferent approach to
this issue.

— When time is observable, treausality principleinsures that the process never
goes back in time. This avoids loops and insures that onlalieypinstanciation
performs less operations than a complete offline policy onpment step.

4.3 Example

Table 1 presents optimization results for the first foutiems of online-ATPI for the
subway problem initialized with a policy, that sets trains to run all day loAgN;,,
was set to 20 an®V,qmpies 10 15 withy = 1 (finite horizon). This simple instance
of the subway problem implied 4 trains and 6 stations. Thélpra’s specification
took time-dependency and stochastic behaviour into adgdanexample passenger
arrival periods were represented using Gaussian disiwitsitvith means and standard
deviations depending on the time of day. The state spacéifoptoblem included 22
discrete, boolean or continuous variables (including }irtteis yielding a sample space
of dimension 22 for the training set.

In table 1.t;,, is the training set building time (which corresponds to perfing the
Ngim Simulations) whil€;..., is the SVM training time (in second§§’smt(so) is the
statistical evaluation oF (sq), while Vs a7 (s0) is the value provided by the trained
SVM. Lastly, #SV is the number of support vectors in the SVM.

The expected value of the initial state increases with fii@ma; this confirms the
fact that policy quality improves with each iteration. Tlnmgrease is not necessarily
linear and depends on the problem’s structure. If the pdldes the simulation to
states that are “far” from explored states (states for wttiehinterpolated value might
be erroneous) and that provide very bad rewards, it can Inaiiyae the initial state’s
expected value drops for one iteration. This is the drawlfrack partial exploration of
the state space and interpolation : very good or very badmsgif the state space might
be discovered late in the iterations.

One can notice that simulation time increases with iteratiorhis is mainly due
to the number of support vectors in the SVM. Depending on thetion step, the
SVM can be much simpler and simulation time can drop againth@nother hand,
online-ATPI is still very sensitive to the initial policy drwe are currently working on
other possibilities to improve solution quality (such a$oait techniques and estimator
refinement during optimization by simulation-optimizatinterweaving).

Since Ny;,, = 20 simulations per iteration always provide a training set r@fuad
45000 points for the SVM in the subway example, the numbeuppert vectors for

lexperiments were ran on a 1.7GHz single core processor @ithaf RAM

TAB. 1 — Subway control policy

o 1 2 3 4
tsim 47.1 203.43 206.45 446.15 | 1504.41
ticarn 2.28 2.7 12.18 56.08 229.45

Vistat(s0) | -3261.31| 3188.11| -2074.74| -1850.12| -887.076
Vsvar(so) | -2980.29| -2962.46| -2020.22| -1837.41| -875.417
#SV 55 61 439 3588 13596

the SVM - and therefore, the iteration duration - is boundedger runs on the subway
problem show that the number of support vectors and leatimmgin columnr, are a
good estimate of the worst values.

5 Conclusion

This papers introduces a new reinforcement learning mefthodolving Generali-
zed Semi-Markov Decision Processes. These processes ataralrand elegant way
of representing the complexity of concurrent stochasticesses. In the framework of
time-dependent GSMDP with explicit time, simulation seegm&e an efficient way
of exploring the state space and evaluating strategiesvibgafrom this idea, we in-
troduced a simulation-based version of Approximate Pdtiesation (API), which we
called online-ATPI. This algorithm incrementally impre/#ae quality of an initial po-
licy by making use of simulation-based evaluation, SVM esgion and online policy
instanciation. Although there are few theorical resultscaning the convergence and
optimality of API, online-ATPI seems to perform well on anagxple of subway net-
work control.

Future work will deal with making online-ATPI more robustitdtialization ; in fact,
if the initial policy does not guide the simulation towarddevant areas of the state
space, the error in policy evaluation can greatly penalizeaigorithm. To avoid this
drawback, we plan to use incremental refining methods foulsition initialization.
This could result in building a more dense training set,é¢f@e minimizing the risk of
not exploring relevant parts of the state space.

Références

BELLMAN R. E. (1957).Dynamic ProgrammingPrinceton University Press, Prince-
ton, New Jersey.

BoYyAN J. & LITTMAN M. (2001). Exact solutions to time dependent MDRdvances
in Neural Information Processing Systerh8, 1026—1032.

ERNSTD., GEURTS P. & WEHENKEL L. (2005). Tree-based batch mode reinforce-
ment learningJMLR, 6, 503-556.

CAp 2008

FENG Z., DEARDEN R., MEULEAU N. & WASHINGTON R. (2004). Dynamic pro-
gramming for structured continuous markov decision pnaisleln20th Conference
on Uncertainty in Al p. 154-161.

GLYNN P. (1989). A GSMP formalism for discrete event systemc. of the IEEE
77.

HAUSKRECHT M. & K VETON B. (2006). Approximate linear programming for sol-
ving hybrid factord MDPs. I®th Int. Symp. on Al and Math.

LAGOUDAKIS M. & PARR R. (2003). Least-squares policy iteratiaiMLR, 4, 1107—
1149.

MuNos R. (2003). Error bounds for approximate policy iteratiom Imt. Conf. on
Machine Learning

NIELSEN F. (1998). GMSim : a tool for compositionnal GSMP modeling.Winter
Simulation Conference

ORMONEITD. & SEN S. (2002). Kernel-based reinforcement learnidgchine Lear-
ning, 49, 161-178.

PUTERMAN M. (1994). Markov Decision Processedohn Wiley & Sons, Inc.

QUESNELG., DuBOzZ R., RAMAT E. & TRAOREM. (2007). VLE - A Multi-Modeling
and Simulation Environment. Ikloving Towards the Unified Simulation Approach,
Proc. of the 2007 Summer Simulation Copf.367-374.

RACHELSON E., GARCIA F. & FABIANI P. (2008). Extending the bellman equation
for MDP to continuous actions and continuous time in thealisted case. 140th
Int. Symp. on Al and Math.

VAPNIK V., GOLOWICH S. & SMOLA A. (1996). Support vector method for function
approximation, regression estimation and signal prongssiAdvances in Neural
Information Processing Systen®s 281-287.

WHITESON S. & STONE P. (2006). Evolutionary function approximation for reinfo
cement learningJMLR, 7, 877-917.

YOUNESH. & SIMMONS R. (2004). Solving generalized semi-markov decision pro-
cesses using continuous phase-type distribution8 AlAl.

ZEIGLERB. P., KIM D. & PRAEHOFERH. (2000). Theory of modeling and simula-
tion : Integrating Discrete Event and Continuous Complex@yic SystemsAca-
demic Press.

