
A Simulation-based Approach for Solving
Generalized Semi-Markov Decision Processes

Emmanuel Rachelson1, Patrick Fabiani1, Frédérick Garcia2, and
Gauthier Quesnel2

1 ONERA-DCSD
2, avenue Edouard Belin, 31055 Toulouse

emmanuel.rachelson, patrick.fabiani@onera.fr
2 INRA-BIA

Chemin de Borde Rouge, 31326 Castanet-Tolosan
gauthier.quesnel, fgarcia@toulouse.inra.fr

Résumé : Time is a crucial variable in planning and often requires special at-
tention since it introduces a specific structure along with additional complexity,
especially in the case of decision under uncertainty. In this paper, after reviewing
and comparing MDP frameworks designed to deal with temporalproblems, we
focus on Generalized Semi-Markov Decision Processes (GSMDP) with obser-
vable time. We highlight the inherent structure and complexity of these problems
and present the differences with classical reinforcement learning problems. Fi-
nally, we introduce a new simulation-based reinforcement learning method for
solving GSMDP, bringing together results from simulation-based policy itera-
tion, regression techniques and simulation theory. We illustrate our approach on
a subway network control example.

1 Introduction

Many problems in planning present both the features of decision under uncertainty
and time-dependency. Imagine, for instance, having to planthe exploitation of a sub-
way network, where available actions only consist in introducing or removing trains
from service. In this problem, the goal is to maximize the number of passengers going
through the network while minimizing the exploitation costof the subway. Passenger
arrival times, movements going in and out of the trains and possible delays in the sys-
tem make the outcome of every action uncertain with regard tothe next state and the
date of the next decision epoch. On top of that, the flow of passengers and their destina-
tions depend greatly on the time of day. All this defines the kind of problems we try to
capture as Temporal Markov Problems. These problems cover awide variety of other
applications, as onboard UAV coordination or airport taxiway management, etc.

Problems of decision under uncertainty are commonly modelled as Markov Deci-
sion Processes (MDP). Recent work on solving large state-space MDP include, for

CAp 2008

example, factored MDP methods, approximate linear programming, hierarchical ap-
proaches, reinforcement learning, etc. Temporal Markov Problems, however, have re-
ceived little attention from the planning and machine learning communities, even though
simulation seems a promising approach to tackling these problems. This paper presents
formalisation and algorithmic issues about Temporal Markov Problems and proposes
an simulation-based algorithm designed to solve them. In section 2, we will review the
models adapted from Markov Processes and designed to include time-dependency and
decision making. Building on this first section’s conclusions, we focus on controling
Generalized Semi-MDP (GSMDP). Section 4 presents our algorithm and discusses the
issues and interests of simulation-based approaches for GSMDP. We illustrate our ap-
proach on the subway control example in section 4.3 and conclude in section 5.

2 Temporal Markov Problems

MDP have become a popular model for describing problems of planning under uncer-
tainty. Formally, an MDP is composed of a 4-tuple< S, A, P, r >, whereS is a coun-
table set of states for the system,A is the countable set of possible actions,P (s′|s, a)
is a probability distribution function providing the transition model between states (as
in a Markov Process, but conditioned with the actiona) andr(s, a) is a reward value
associated with the(s, a) transition, used to build criteria and to evaluate actions and
policies. Solutions to MDP problems are often given asMarkovian policiesπ, namely
functions that map current states to actions. One can introduce criteria to evaluate these
policies, as the discounted reward criterion given in equation 1. Criteria permit defini-
tion of thevalue functionV π associated with a policy. An important result concerning
MDP is that for any history-dependent policy, there exists aMarkovian policy which
is at least as good with regard to a given criterion. Consequently, one can safely seach
for optimal control policies in the restricted space of Markovian policies without loss
in optimality. Finally, algorithms asvalue iterationor policy iterationare based on the
fact that the optimal policy’s value functionV ∗ obeys Bellman’s optimality equation 2
((Bellman, 1957)).

V π
γ (s) = E

(

∞
∑

δ=0

γδr(sδ, π(sδ)

)

(1)

V ∗(s) = max
a∈A

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

]

(2)

2.1 Including continuous time in the MDP framework

Introducing time in Markov Processes (MP) models - and in their decisional coun-
terparts, MDP - can be done by defining stochastic durations between decision epochs.
In a standard MP or MDP, the sojourn time in a given state is oneand decision epochs
occur at integer time values (thus yielding theγδ in the discounted criterion). Allowing
the sojourn time in a given state to be continuous and stochastic defines the Semi-MP, or
Semi-MDP formalism. In an SMDP (Puterman, 1994), state sojourn time is described

through a distributionF (τ |s, a) indicating the time before transition, provided that we
undertake actiona in states. Therefore, an SMDP is a 5-tuple< S, A, P, F, r > which
corresponds to a Markov Process but with stochastic state sojourn time. Policies for
the control of SMDP can be computed using standard MDP algorithms since solving a
discounted reward SMDP turns out to be equivalent to performing an integration over
expected transition durations and to solving a total rewardMDP. This is mainly due
to the independence between state sojourn timeτ and arrival states′. This very strong
assumption was lifted in the Time-dependent MDP (TMDP) model of (Boyan & Litt-
man, 2001) and generalized recently in the XMDP model of (Rachelsonet al., 2008).
Formally, an XMDP is described by a 4-tuple< S, A, p, r > where the state spaceS
can be composed of discrete and continuous variables and mayinclude the process’
time, A is a continuous or discrete parametric action space andp andr correspond to
transition and reward models for states ofS and actions ofA. (Rachelsonet al., 2008)
proved that XMDP obeyed a similar optimality equation as equation 4, thus proving that
standard algorithms as value iteration could be safely usedto solve XMDP. Using the
XMDP representation, one can model any stochastic decisionprocess with continuous
observable time and hybrid state and action spaces.

This seems to suit our Temporal Markov Problems well and somerecent techniques
for solving hybrid state space MDP ((Hauskrecht & Kveton, 2006; Fenget al., 2004))
could be applied here. However, writing transition and duration functions for Temporal
Markov Problems is often a very complex task and require a lotof engineering. For ins-
tance, the effect of aRemoveT rain action on the global state of the subway problem
is the result of several concurrent processes : the passenger arrivals, the trains move-
ments, the removal of one train, etc. : all compete to change the system’s state and it is
a complex task to summarize all these process’ concurrent stochastic influence into the
transition and duration functions.

2.2 Concurrency and MDP

In the stochastic processes litterature, concurrent Markov processes are modelled as
Generalized Semi-Markov Processes (GSMP) (Glynn, 1989). AGSMP is a natural re-
presentation of several concurrent SMP affecting the same state space. (Younes & Sim-
mons, 2004) introduced Generalized Semi-Markov Decision Processes (GSMDP) in
order to model the problem of decision under uncertainty where actions compete with
concurrent uncontrolable stochastic events. A GSMDP describes a problem by factoring
the global transition function of the process by the different stochastic contributions of
concurrent events. This makes GSMDP an elegant and efficientway of describing the
complexity of Markov Temporal Problems. We will therefore focus on solving time-
dependent GSMDP from now on and will give a more formal definition of GSMDP in
section 3.

3 GSMP and GSMDP

The previous section illustrated how Temporal Markov Problems needed both conti-
nuous observable time models and an efficient representation of concurrency in order

CAp 2008

MP SMP GSMP

MDP SMDP GSMDP

+ continuous
sojourn time + concurrency

+ actions

FIG. 1 – From MP to GSMDP

to represent the complexity of the phenomenons at stake. In this section, we focus on
the GSMDP formalism with observable time. We define control policies, the associated
state variable issues and present resolution methods.

3.1 Concurrent processes

We start from the stochastic process point of view, with no decision making. Formally,
a GSMP (Glynn, 1989) is described by a setS of states and a setE of events. At any
time, the process is in a states and there exists a subsetEs of events that are calledactive
or enabled. These events represent the different concurrent processes that compete for
the next transition. To each active evente, we associate a clockce representing the
duration before this event triggers a transition. This duration would be the sojourn time
in states if evente was the only active event. The evente∗ with the smallest clockce∗

(the first to trigger) is the one that takes the process to a newstate. The transition is then
described by the transition model of the triggering event : the next states′ is picked
according to the probability distributionPe∗(s′|s). In the new states′, events that are
not in Es′ are disabled (which actually implies setting their clocks to +∞). For the
events ofEs′ , clocks are updated the following way :

– If e ∈ Es \ {e∗}, thence ← ce − ce∗

– If e 6∈ Es or if e = e∗, pick ce according toFe(τ |s′)
The first active event to trigger then takes the process to a new state where the above
operations are repeated.

One first important remark concerning GSMP is that the overall process does not
retain Markov’s property anymore : knowing the current state s is not sufficient to pre-
dict the distribution on the next state of the process. (Nielsen, 1998) showed that by
augmenting the state space with the events’ clocks, one could retain the Semi-Markov
behaviour for a GSMP, we will discuss this issue in the next section.

Introducing action choice in a GSMP yields a GSMDP as defined by (Younes & Sim-
mons, 2004). In a GSMDP, we identify a subsetA of controlable events or actions, the
remaining ones are called uncontrolable or exogeneous events. Actions can be enabled
or disabled at will and the subsetAs = A∩Es of activable actions is never empty since
it always contains at least the “idle” actiona∞ (whose clock is always set∞) which, in
fact, does nothing and lets the first exogeneous event take the process to a new state. As
in the MDP case, searching for control strategies on GSMDP imply defining rewards
r(s, e) or r(s, e, s′) associated to transitions and introducing policies and criteria.

3.2 Controling GSMDP

As mentionned before, the transition function for the global semi-Markov process
does not retain the Markov property without augmenting the state space. In the clas-
sical MDP framework, one can make use of the Markov property of the transition
function to prove that there exists a Markovian policy (which only depends on the
current state) which is at least as good as any history-dependent policy (Puterman,
1994). In the GSMDP case however, this is no longer possible and in order to de-
fine criteria and to find optimal policies, we need - in the general case - to allow
the policy to depend on the wholeexecution pathof the process. An execution path
(Younes & Simmons, 2004) of lengthn from states0 to statesn is a sequenceσ =
(s0, t0, e0, s1, . . . , sn−1, tn−1, en−1, sn) whereti is the sojourn time in statesi before
eventei triggers. As in (Younes & Simmons, 2004), we define the discounted value of
an execution path by :

V π
γ (σ) =

n−1
∑

i=0

γTi

(

γtik(si, ei, si+1) +

∫ ti

0

γtc(si, ei)dt

)

(3)

wherek andc are traditional SMDP lump sum reward and reward rate functions, and
Ti =

∑i−1

j=0
tj . One can then define the expected value of policyπ in states as the

expectation over all execution paths starting ins : V π
γ (s) = Eπ

s

[

V π
γ (σ)

]

.
This provides a criterion for evaluating policies. The goalis now to find policies that

maximize this criterion. The main problem here is that it is hard to search the space of
history-dependent policies. On the other hand, the supplementary variable technique is
often used to transform non-Markovian processes into Markovian ones. It consists in
augmenting the state space with just enough variables so that the distribution over future
states only depends on the current value of these variables.In (Nielsen, 1998), Nielsen
augments the natural states of the process with all the clock readings and shows that
this operation brings Markov behavior back to the GSMP process. We will note this
augmented state space(s, c) for convenience.

Unfortunately, it is unrealistic to define policies over this augmented state space since
clock readings contain information about thefutureof the system. From here, several
options are possible :

– One could decide to sacrifice optimality and to search for “good” policies among a
restricted set of policies, say the policies defined on the current natural state only.

– One could also search for representation hypothesis that simplify the GSMDP mo-
del and that make natural state Markovian again.

– One could compute optimal policies on the augmented state space(s, c) and then
derive a policy on observable variables only.

– Finally, one could search for a set ofobservablevariables which retain the Markov
property for the process, for example the set composed of thenatural state of the
processs, the duration for which each active eventei has been activeτi and its
activation statesi. We will note this augmented state(s, τ, sa)

(Younes & Simmons, 2004) is based on the second option listedabove. In the next
paragraph, we briefly present this approach and introduce our reinforcement learning

CAp 2008

method designed to deal with very large state spaces for GSMDP with continuous ob-
servable time and that can be adapted to the three other options.

3.3 Resolution methods

The resolution method for GSMDP proposed by (Younes & Simmons, 2004) relies
on the memoryless property of the exponential distribution. If one approximates all
duration functionsF by phase-type distributions (which are combinations of exponen-
tial distributions), then augmenting the state space with the distribution phases brings
the overall behaviour of the GSMDP back to a Continuous Time MDP, which can, in
turn, be transformed to a standard discrete time MDP by the method ofuniformization
(Puterman, 1994). We refer the reader to (Younes & Simmons, 2004) for more details.

We wish not make hypothesis on the distributions that describe the dynamics of our
system. On top of that, many problems we want to consider present other characteris-
tics such as very large, and sometimes continuous state spaces. Therefore, we need to
consider methods for policy search that can cope with large hybrid state spaces (yiel-
ding large hybrid trajectory spaces) and observable time. Finally, for some aspects of
the problems, the stochastic behaviour might still be very complex to model formally
while simulators might be readily available (for instance,in the airport taxiway mana-
gement problem, the weather model is not given as probability distribution functions
but as a simulator). In order to deal with such problems we turn towards reinforcement
learning methods. More specifically, in order to avoid complete state space exploration,
we introduce a version of approximate policy iteration where policies are defined and
evaluated on a subset of states and then generalized by regression to the whole state
space. The choice of the subset of states used for evaluationis guided by the simula-
tion of the current policy. We present our algorithm in section 4.1 and then illustrate
why simulation-based policy iteration is particularly adapted to temporal problems in
section 4.2.

4 Simulation-based approaches

4.1 Algorithm

Our algorithm belongs to the Approximate Policy Iteration (API) family of algo-
rithms. Policy Iteration is an algorithm for solving MDP which searches the policy
space in a two-step fashion as illustrated on figure 2. Given apolicy πn at stepn, the
first step consists in computing the value ofπn. The second step then performs a Bell-
man backup in every state of the state space, thus improving the policy. An important
property of policy iteration is its good anytime behaviour :at any stepn, policyπn will
be at least as good as any previous policy. Policy Iteration usually converges in less ite-
rations than the standard Value Iteration algorithm but takes longer since the evaluation
step is very time consuming. To deal with real problems, one needs to allow for ap-
proximate policy evaluation (as in (Lagoudakis & Parr, 2003)) since exact computation
is often infeasible. There are few theoretical guarantees on convergence and optimality
of API, as explained in (Munos, 2003).

Policy evaluation: V πn

One-step improvement: πn+1

FIG. 2 – Policy Iteration

The version of simulation-based policy iteration we use performs simulations of the
current policyπn starting from the current state of the process and stores thetriplets of
states, times and rewards(sδ, tδ, rδ) obtained. Thus, one execution path yields a value
function over the discrete set of states explored during simulation (equation 3). All the
value functions issued from simulation form a training set{(s, v)}, s ∈ S, v ∈ R,
from which we wish to generalize a value functionṼ over all states. The average value
of states in the training set tends toV πn(s) as the number of simulations tends to
+∞. One major advantage of policy-driven simulation is that the policy guides the
exploration of the state space to the states most likely to bevisited, thus refining the
training set over the states that have the largest probability of being reached by the
policy. A second advantage is that this technique is adaptedto large dimension state
spaces.

Once simulation has provided the set of samples in the space of trajectories, we want
to use it as a training set for a regression method that will generalize it to the entire state
space. Several approaches to regression based reinforcement learning have been propo-
sed in the machine learning community - methods based on trees (Ernstet al., 2005),
evolutionary functions (Whiteson & Stone, 2006), kernel methods (Ormoneit & Sen,
2002), etc. - but few have been coupled with policy simulation. We chose to focus on
support vector machines (SVM) because of their ability to handle the large dimension
spaces over which our samples are defined. SVM belong to the family of kernel methods
and can be used for both regression and classification. Training a standard SVM over a
given training set corresponds to looking for a hyperplane interpolating the samples in a
higher dimensional space calledfeature space. Practically, SVM take advantage of the
kernel trickto avoid expressing the feature space explicitely. For moredetails on SVM,
we refer the reader to (Vapniket al., 1996). In our case, we call̃Vn(s) the interpolated
value function of policyπn.

Finally, while simulation-based exploration and SVM generalization of the value
function are techniques dedicated to improve the evaluation step of approximate policy
iteration, the third specificity of our algorithm deals withimproving the optimization
step. For large and possibly continuous state spaces, it might be very long or imprac-
ticable to compute the one-step improvement of the policy. Indeed, most of the time,
computing a complete policy is irrelevant since most of thispolicy will never be used
for the simulation-based evaluation step. Instead, it might be easier to compute online
the one-step lookahead best action in the current state withrespect to the stored value
function. More precisely, in a standard MDP, the optimization step consists in solving

CAp 2008

equation 4 in every state :

πn+1(s)← arg max
a∈A

Q̃n+1(s, a) (4)

with : Q̃n+1(s, a) = r(s, a) +
∑

s′∈S

P (s′|s, a)Ṽn(s, a)

For continuous state spaces, computingπn+1 implies being able to compute integrals
overP andṼn. We wish not make hypothesis on the model used and therefore will per-
form a discretization for evaluation of the integral. Finally, since the model ofP is not
necessarily known to the decision maker and since we have a simulator of our system,
we will make a second use of this simulator for the purpose of evaluating the expected
rewardQ̃n+1(s, a) associated with performing actiona in states with respect to value
function Ṽn (equation 5). At the end of the evaluation phase, the value function Ṽn is
stored and no policy is computed from it. Instead, we immediately enter a new simula-
tion phase but whenever the policyπn+1 is asked for the action to perform in the current
states it performsonline the estimation of allQ-values for states and then choses the
best action to perform. The speed up in the execution of the policy iteration algorithm
is easy to illustrate for discrete state spaces problems since we replace|S| evaluations
of theQ-values for policy update by the number of states visited during one simulation.
This is especially interesting in the case of Temporal Markov Problems since (as we
will explain in section 4.2) a state is never visited twice. Consequently,̃Qn+1(s, a) is
calculated by simply simulatingN times the application ofa in s and observing the set
of {(ri, s

′

i)} as in equation 5. Then the policy returns the action which corresponds to
the largestQ-value. We call this online instanciation of the policy “online approximate
policy iteration”.

Q̃n+1(s, a) =
1

N

N
∑

i=1

[

ri + Ṽn(s′i)
]

(5)

Our algorithm, calledonline Approximate Temporal Policy Iteration(online-ATPI), is
summarized in algorithm 1.

Note that in algorithm 1,s actually denotes the part of the state that is observable
to the policy. This makes online-ATPI adaptable to any of thesets of policy variables
presented in section 3.2. We tested a version of online-ATPIon the natural state of the
process.

4.2 Simulating GSMDP and learning

Simulation is a key aspect of ATPI. The Discrete EVents Simulation theory (DEVS)
of (Zeigler et al., 2000) provides a general framework for specifying discrete event
dynamic systems. We implemented GSMP and GSMDP extensions in the VLE multi-
modeling platform (Quesnelet al., 2007) based on the DEVS specification ; by doing
so, we take advantage of the DEVS framework’s properties which fit our simulation
requirements, namely :

– Event driven simulation and time oriented output.
– The simulation engine deals with simultaneity issues and with simulation consis-

tency and reproducibility.

Algorithm 1 Online-ATPI
main :
Input :π0 or Ṽ0, s0

loop
TrainingSet ← ∅
for i = 1 to Nsim do
{(s, v)} ← simulate(Ṽ , s0)
TrainingSet← TrainingSet∪ {(s, v)}

end for
Ṽ ← TrainApproximator(TrainingSet)

end loop

simulate(Ṽ , s0) :
ExecutionPath← ∅
s← s0

while horizon not reacheddo
action← ComputePolicy(s, Ṽ)
(s′, r)← GSMDPstep(s, action)
ExecutionPath← ExecutionPath ∪ (s′, r)

end while
convert execution path to value function{(s, v)} (eqn 3)
return {(s, v)}

ComputePolicy(s, Ṽ) :
for a ∈ A do

Q̃(s, a) = 0
for j = 1 to Nsamples do

(s′, r)← GSMDPstep(s, a)
Q̃(s, a)← Q̃(s, a) + r + γt′−tṼ (s′)

end for
Q̃(s, a)← 1

Nsamples
Q̃(s, a)

end for
action← arg max

a∈A
Q̃(s, a)

return action

– Simulation engines such as the VLE platform (Quesnelet al., 2007) are readily
available and built on the same discrete events simulation theory.

– Multi-modelling possibilities, opens the algorithm to other formalisms than MP.
On top of that, the DEVS formalism allows for experimental frames definition, which
would permit integration of the whole simulation and planning loop in a DEVS speci-
fication. We haven’t used experimental frames yet but plan todo so in future versions.

Finally, we have claimed that Temporal Markov Problems present a specific struc-
ture that makes the problem both hard to deal with for classical reinforcement learning

CAp 2008

algorithms and particularly adapted for online approximate policy iteration. More spe-
cifically :

– Most reinforcement learning algorithms deal with discrete state spaces. Some ap-
proaches have been proposed ((Ormoneit & Sen, 2002; Ernstet al., 2005; Haus-
krecht & Kveton, 2006) for dealing with continuous or hybridstates but the topic
is still very new. Often, continuous state resolution methods depend strongly on
the representation used and on the ability to calculate integrals over the probability
functions. Simulation-based sampling approaches proposea different approach to
this issue.

– When time is observable, thecausality principleinsures that the process never
goes back in time. This avoids loops and insures that online policy instanciation
performs less operations than a complete offline policy improvement step.

4.3 Example

Table 1 presents optimization results for the first four iterations of online-ATPI for the
subway problem initialized with a policyπ0 that sets trains to run all day long1. Nsim

was set to 20 andNsamples to 15 with γ = 1 (finite horizon). This simple instance
of the subway problem implied 4 trains and 6 stations. The problem’s specification
took time-dependency and stochastic behaviour into account ; for example passenger
arrival periods were represented using Gaussian distributions with means and standard
deviations depending on the time of day. The state space for this problem included 22
discrete, boolean or continuous variables (including time), thus yielding a sample space
of dimension 22 for the training set.

In table 1,tsim is the training set building time (which corresponds to performing the
Nsim simulations) whiletlearn is the SVM training time (in seconds).̃Vstat(s0) is the
statistical evaluation of̃V (s0), while ṼSV M (s0) is the value provided by the trained
SVM. Lastly, #SV is the number of support vectors in the SVM.

The expected value of the initial state increases with iterations ; this confirms the
fact that policy quality improves with each iteration. Thisincrease is not necessarily
linear and depends on the problem’s structure. If the policytakes the simulation to
states that are “far” from explored states (states for whichthe interpolated value might
be erroneous) and that provide very bad rewards, it can happen that the initial state’s
expected value drops for one iteration. This is the drawbackfrom partial exploration of
the state space and interpolation : very good or very bad regions of the state space might
be discovered late in the iterations.

One can notice that simulation time increases with iterations. This is mainly due
to the number of support vectors in the SVM. Depending on the iteration step, the
SVM can be much simpler and simulation time can drop again. Onthe other hand,
online-ATPI is still very sensitive to the initial policy and we are currently working on
other possibilities to improve solution quality (such as roll-out techniques and estimator
refinement during optimization by simulation-optimization interweaving).

SinceNsim = 20 simulations per iteration always provide a training set of around
45000 points for the SVM in the subway example, the number of support vectors for

1experiments were ran on a 1.7GHz single core processor with 1Go of RAM

TAB . 1 – Subway control policy
π0 π1 π2 π3 π4

tsim 47.1 203.43 206.45 446.15 1504.41
tlearn 2.28 2.7 12.18 56.08 229.45

Ṽstat(s0) -3261.31 3188.11 -2074.74 -1850.12 -887.076
ṼSV M (s0) -2980.29 -2962.46 -2020.22 -1837.41 -875.417

#SV 55 61 439 3588 13596

the SVM - and therefore, the iteration duration - is bounded.Longer runs on the subway
problem show that the number of support vectors and learningtime in columnπ4 are a
good estimate of the worst values.

5 Conclusion

This papers introduces a new reinforcement learning methodfor solving Generali-
zed Semi-Markov Decision Processes. These processes are a natural and elegant way
of representing the complexity of concurrent stochastic processes. In the framework of
time-dependent GSMDP with explicit time, simulation seemsto be an efficient way
of exploring the state space and evaluating strategies. Drawing from this idea, we in-
troduced a simulation-based version of Approximate PolicyIteration (API), which we
called online-ATPI. This algorithm incrementally improves the quality of an initial po-
licy by making use of simulation-based evaluation, SVM regression and online policy
instanciation. Although there are few theorical results concerning the convergence and
optimality of API, online-ATPI seems to perform well on an example of subway net-
work control.

Future work will deal with making online-ATPI more robust toinitialization ; in fact,
if the initial policy does not guide the simulation towards relevant areas of the state
space, the error in policy evaluation can greatly penalize the algorithm. To avoid this
drawback, we plan to use incremental refining methods for simulation initialization.
This could result in building a more dense training set, therefore minimizing the risk of
not exploring relevant parts of the state space.

Références

BELLMAN R. E. (1957).Dynamic Programming. Princeton University Press, Prince-
ton, New Jersey.

BOYAN J. & L ITTMAN M. (2001). Exact solutions to time dependent MDPs.Advances
in Neural Information Processing Systems, 13, 1026–1032.

ERNST D., GEURTS P. & WEHENKEL L. (2005). Tree-based batch mode reinforce-
ment learning.JMLR, 6, 503–556.

CAp 2008

FENG Z., DEARDEN R., MEULEAU N. & WASHINGTON R. (2004). Dynamic pro-
gramming for structured continuous markov decision problems. In20th Conference
on Uncertainty in AI, p. 154–161.

GLYNN P. (1989). A GSMP formalism for discrete event systems.Proc. of the IEEE,
77.

HAUSKRECHT M. & K VETON B. (2006). Approximate linear programming for sol-
ving hybrid factord MDPs. In9th Int. Symp. on AI and Math.

LAGOUDAKIS M. & PARR R. (2003). Least-squares policy iteration.JMLR, 4, 1107–
1149.

MUNOS R. (2003). Error bounds for approximate policy iteration. In Int. Conf. on
Machine Learning.

NIELSEN F. (1998). GMSim : a tool for compositionnal GSMP modeling. In Winter
Simulation Conference.

ORMONEIT D. & SEN S. (2002). Kernel-based reinforcement learning.Machine Lear-
ning, 49, 161–178.

PUTERMAN M. (1994).Markov Decision Processes. John Wiley & Sons, Inc.
QUESNELG., DUBOZ R., RAMAT E. & TRAOREM. (2007). VLE - A Multi-Modeling

and Simulation Environment. InMoving Towards the Unified Simulation Approach,
Proc. of the 2007 Summer Simulation Conf., p. 367–374.

RACHELSON E., GARCIA F. & FABIANI P. (2008). Extending the bellman equation
for MDP to continuous actions and continuous time in the discounted case. In10th
Int. Symp. on AI and Math.

VAPNIK V., GOLOWICH S. & SMOLA A. (1996). Support vector method for function
approximation, regression estimation and signal processing. Advances in Neural
Information Processing Systems, 9, 281–287.

WHITESON S. & STONE P. (2006). Evolutionary function approximation for reinfor-
cement learning.JMLR, 7, 877–917.

YOUNES H. & SIMMONS R. (2004). Solving generalized semi-markov decision pro-
cesses using continuous phase-type distributions. InAAAI.

ZEIGLER B. P., KIM D. & PRAEHOFERH. (2000). Theory of modeling and simula-
tion : Integrating Discrete Event and Continuous Complex Dynamic Systems. Aca-
demic Press.

