Towards a hybrid approach for intra-daily recourse strategies computation #### E. Rachelson COPI'11, Nov. 24th, 2011 ## Foreword: a few thoughts - Often, conference presentations = - 1. hard pb - 2. smart model/algo - 3. outstanding results - 4. discussion at coffee break - Once things work, long road to the real-life problem - ... along the way: interesting questions - ... most conveniently discussed at the coffee break. ## Previously on "Intra-daily recourse strategies" Daily electricity production planning Intra-daily recourse strategies ## Making the best out of two worlds Extracting domain knowledge to simplify resolution A few results An abstraction of the problem #### Scaling up to the real problems The representation issue The Learning method The conditional dependency problem Coming up next on "Intra-daily recourse strategies" # Daily production planning ## EDF's electricity network: - 58 nuclear reactors in 20 locations - 40 thermal plants - 450 hydraulic p., 640 dams, 50 valleys - wind, solar, biomass energy - Contractual requirements: the reserves #### Daily planning problem: - balance supply/demand - ensure network stability # Mixed Integer Linear Program formulation $$\sum_{u=1}^{n} C_u(\mathbf{P}_u) + C_0(\mathbf{P}_0)$$ • max starts and extreme changes, • min times between schedule changes, etc. $\Rightarrow \sim 10^6$ variables and constraints. Lagrangian relaxation and price decomposition for resolution. Required computation time: \sim 15 minutes. Weather, consumers, market prices, etc. \rightarrow hard to predict. The computed plan can be very suboptimal. Can EDF change its production plan during the day? Yes, but { no more than 30 modified plants re-declarations every hour (contract with the network manager). Weather, consumers, market prices, etc. \rightarrow hard to predict. The computed plan can be very suboptimal. Can EDF change its production plan during the day? Yes, but { no more than 30 modified plants re-declarations every hour (contract with the network manager). Original LP + "max 30 modified plants" → linear boolean constraints. = larger Mixed Integer (Boolean) Program Required computation time: \sim 40+ minutes. Resolution time window: \sim <10 minutes. Current resolution method: experts make quick adjustments during the day. Original LP + "max 30 modified plants" \rightarrow linear boolean constraints. = larger Mixed Integer (Boolean) Program Required computation time: \sim 40+ minutes. Resolution time window: \sim <10 minutes. Current resolution method: experts make quick adjustments during the day. $\label{eq:constraints} \mbox{Original LP +} \\ \mbox{``max 30 modified plants''} \rightarrow \mbox{linear boolean constraints}.$ = larger Mixed Integer (Boolean) Program Required computation time: \sim 40+ minutes. Resolution time window: \sim <10 minutes. Current resolution method: experts make quick adjustments during the day. ## In a nutshell ## Intra-daily recourse strategies: - Very large MILP - Short resolution time window - Part of the information is already known the day before # Predicting part of the solution Exploiting offline resolution time... ## Predicting part of the solution Exploiting offline resolution time... ... to facilitate online resolution. $$\Delta D \longrightarrow \boxed{ \begin{array}{c} 30\text{-unit} \\ \text{predictor} \end{array} } \longrightarrow \begin{array}{c} \text{reduced} \\ \text{MIP/LP} \end{array} \longrightarrow \begin{array}{c} \text{solve} \\ \text{MIP/LP} \end{array} \longrightarrow P^*$$ #### Benchmark problem - 27 plants - $N_{max} = 9$ - 96219 variables - 61455 constraints - 120 historical variations ΔD ## Supervised Learning method - Boosting + {classif. trees, SVM, rules of thumb} - prediction: $(\Delta, power plant) \mapsto b \in \{0, 1\}$ Rachelson E., Ben Abbes A., Diemer S. (2010). Combining Mixed Integer Programming and Supervised Learning for Fast Re-planning 22nd Int. Conf. on Tools with Artificial Intelligence. - Multiple local minima, mainly due to equivalent plants. - we did not really find the correct minimum. - + we actually found a robust, explainable, quasi-optimal solution. - The classifier's prediction weakness is not a handicap. - \rightarrow Global redeclaration structure well captured. - → LP optimization takes care of local optimization. - Average computation time gain vs. optimality loss. | Exact optimization of M | 1h | |------------------------------|---------| | Power plant selection | 0.24s | | Reduced optimization of M' | 128.07s | \Rightarrow 30 times faster with less than 0.1% optimality loss. ## An abstraction of the problem A Machine Learning point of view on re-planning. Generalizing experience... ... for online resolution. # An abstraction of the problem prediction: $$(\Delta, power plant) \mapsto b \in \{0; 1\}$$ \leftrightarrow prediction: $(M, x_i) \mapsto b_i \in \{0; 1\}$ Does the previous analysis and modeling hold when confronted to the real-life problem? ## Scaling up — the representation issue Learning a mapping $$(M, x_i) \mapsto b_i \in \{0, 1\}$$. but $M \in ?$ #### E.g.: - variations in demand → change in the r.h.s. - unit outage/failure → more/less constraints Comparing M and M' cannot be based only on the coeffs. \rightarrow need to define a *metric over problems*. #### E.g.: - coeffs variation - · geometry on the admissible set # Scaling up — the algorithmic learning issue Issue: few samples, large dimension. - Many good mappings are possible. - \rightarrow Real-life problems need dimension reduction. - Full problem space coverage is not practical. - \rightarrow Real-life problems need margins / confidence bounds. $$(M, x_i) \mapsto b_i \in \{0, 1\} \Leftrightarrow (M) \mapsto b \in \{0, 1\}^n$$? $$(M, x_i) \mapsto b_i \in \{0, 1\} \Leftrightarrow (M) \mapsto b \in \{0, 1\}^n$$? practical version: $30 \times \text{``predict a unit''} \Leftrightarrow \text{``predict 30 units''}?$ $$(M, x_i) \mapsto b_i \in \{0; 1\} \Leftrightarrow (M) \mapsto b \in \{0; 1\}^n$$? practical version: $30 \times$ "predict a unit" \Leftrightarrow "predict 30 units"? abstract (ML) version: $$\max_{b_{i},i\in[1;n_{b}]} Pr(x_{i}^{*} = b_{i},i\in[1;n_{b}]) \\ \Leftrightarrow \forall i\in[1;n_{b}], \max_{b_{i},i\in[1;n_{b}]} Pr(x_{i}^{*} = b_{i})?$$ - ightarrow Taking the 30 best scores out of the predictor is **not** necesarily taking the best redeclaration. - → set prediction problem - → sequence prediction problem: 30-stage control problem \rightarrow closed-loop formulation: s = (M, h) # Any hope left for MIP/ML? - MILP resolution from a ML perspective - Predicting discrete values in MILP = promising idea - Showed good results - Makes the best out of Optimisation (global optimum on a restricted pb) and Inference (capitalizing on previous experience). - However, this prediction is not a trivial ML problem - A first method (and some related other ones) proved successful - But this first approach's grounding is somewhat imperfect - representation issue - · algorithmic issue - conditional dependency issue #### This presentation in a nutshell: Experience feedback seemed relevant, for the community, in order to work out a better problem statement. ## Many thanks to: - Ala Ben-Abbes - Grace Doukopoulos - Arnaud Lenoir - Jérome Quenu Any questions? ## Training/testing error # Margins # Trajectories