
Temporal Markov Decision Problems
—

Formalization and Resolution

Emmanuel Rachelson

Ecole doctorale : Systèmes
Etablissement d’inscription : ISAE-SUPAERO

Laboratoire d’accueil : ONERA-DCSD

March 23rd, 2009



Background Policies Time and MDPs TMDPpoly Illustration Is that sufficient? iATPI Conclusion

Motivation

1 / 45
Temporal Markov Decision Problems — Formalization and Resolution



Background Policies Time and MDPs TMDPpoly Illustration Is that sufficient? iATPI Conclusion

Motivation

Performing
“as well as possible”

1 / 45
Temporal Markov Decision Problems — Formalization and Resolution



Background Policies Time and MDPs TMDPpoly Illustration Is that sufficient? iATPI Conclusion

Motivation

Uncertain outcomes

1 / 45
Temporal Markov Decision Problems — Formalization and Resolution



Background Policies Time and MDPs TMDPpoly Illustration Is that sufficient? iATPI Conclusion

Motivation

Uncertain durations

1 / 45
Temporal Markov Decision Problems — Formalization and Resolution



Background Policies Time and MDPs TMDPpoly Illustration Is that sufficient? iATPI Conclusion

Motivation

Time-dependent
environment

1 / 45
Temporal Markov Decision Problems — Formalization and Resolution



Background Policies Time and MDPs TMDPpoly Illustration Is that sufficient? iATPI Conclusion
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Time-dependent
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Problem statement

We want to build a control policy
which allows the agent to coordinate its durative actions

with the continuous evolution of its uncertain environment
in order to optimize its behaviour w.r.t. a given criterion.
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Modeling background

Sequential decision under probabilistic uncertainty:

Markov Decision Process

Tuple 〈S,A,p, r ,T 〉
Markovian transition model p(s′|s,a)
Reward model r(s,a)
T is a set of timed decision epochs {0,1, . . . ,H}

Infinite (unbounded) horizon: H→ ∞

t0 1 n n + 1

s0

}
p(s1|s0, a0)
r(s0, a0)}

p(s1|s0, a2)
r(s0, a2)

sn p(sn+1|sn, an)
r(sn, an)
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Optimal policies for MDPs

Value of a sequence of actions

∀(an) ∈ AN,V (an)(s) = E

(
∞

∑
δ=0

γδ r(sδ ,aδ )

)

Stationary, deterministic, Markovian policy

D =

{
π :

{
S → A
s 7→ π(s) = a

}

Optimality equation

V ∗(s) = max
π∈D

V π(s) = max
a∈A

{
r(s,a) + γ ∑

s′∈S
p(s′|s,a)V ∗(s′)

}
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What are we looking for?

Time-dependent policies

t

in s1: a3 a7 a1

in s2: a2 a6 a1

in s3: a3 a2

a3
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What are we looking for?
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Continuous durations in stochastic processes

MDPs: the set T contains integer-valued dates.
→ more flexible durations?

Semi-Markov Decision Process

Tuple 〈S,A,p, f , r〉
Duration model f (τ|s,a)
Transition model p(s′|s,a) or p(s′|s,a,τ)

MDP:
t0 t1 t2 t3 . . . tδ

∆t = 1

SMDP:
t0 t1 t2 t3 . . . tδ

f(τ |s, a)
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Time-dependent MDPs

Definition (TMDP, [Boyan and Littman, 2001])

Tuple 〈S,A,M,L,R,K 〉
M Set of outcomes µ =

(
s′µ ,Tµ ,Pµ

)
L(µ|s, t,a) Probability of triggering outcome µ

R(µ, t, t ′) = rµ,t(t) + rµ,τ (t ′− t) + rµ,t ′(t ′)

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

Boyan, J. A. and Littman, M. L. (2001).
Exact Solutions to Time Dependent MDPs.
Advances in Neural Information Processing Systems, 13:1026–1032.
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TMDP optimality equation

V (s, t) = sup
t ′≥t

(∫ t ′

t
K (s,θ)dθ + V (s, t ′)

)
V (s, t) = max

a∈A
Q(s, t,a)

Q(s, t,a) = ∑
µ∈M

L(µ|s, t,a) ·U(µ, t)

U(µ, t) =

{ ∫
∞

−∞
Pµ (t ′)[R(µ, t, t ′) + V (s′µ , t ′)]dt ′ if Tµ = ABS∫

∞

−∞
Pµ (t ′− t)[R(µ, t, t ′) + V (s′µ , t ′)]dt ′ if Tµ = REL

Qn(s, t, a1)

Qn(s, t, a2)

Qn(s, t, a3)

Qn

t
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An MDP with continuous observable time?

SMDPs no explicit time-dependency

TMDPs time-dependent but


no explicit criterion
no theoretical guarantees
restrictions on the model

⇒ Can we provide a sound and more general framework for
representing time in MDPs?
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Including observable time in MDPs

Can an MDP represent its own process’ time as a state variable?

XMDP

Tuple 〈Σ,A(X),p, r〉
Σ σ = (s, t) ∈B(S×R)

A(X) compact set of parametric actions ai(x)

p(σ ′|σ ,a(x)) upper semi-continuous w.r.t. x

r(σ ,a(x)) positive, upper semi-continuous w.r.t. x

Steady time advance

∀(σ ,a(x)) ∈ Σ×A(X), ∃α > 0/ t ′ < t + α ⇒ p(σ ′|σ ,a(x)) = 0

“tδ+1 ≥ tδ + α”
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Theorem (XMDP optimality equation, [Rachelson et al., 2008a])

The optimal value function V ∗ is the unique solution of:

∀(s, t) ∈ S×R, V (s, t) =

sup
a(x)∈A(X)

{
r(s, t,a(x)) +

∫
t ′∈R
s′∈S

γ
t ′−tp(s′, t ′|s, t,a(x))V (s′, t ′)ds′dt ′

}

Rachelson, E., Garcia, F., and Fabiani, P. (2008a).
Extending the Bellman Equation for MDP to Continuous Actions and Continuous Time in
the Discounted Case.
In International Symposium on Artificial Intelligence and Mathematics.

Theorem (XMDP optimal policy)

Under the previous assumptions, there exists a deterministic,
Markovian policy such that V π = V ∗.
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TMDPs and XMDPs

Optimality equation and conditions
TMDP optimality equation ≡ XMDP equation with specific assumptions.

total reward criterion

t-deterministic and s-static, implicit wait action

interleaving of wait/action

no lump sum reward for wait action

assumptions on r ,L,Pµ so that the optimal policy exists

assumptions on r ,L,Pµ so that the systems retains physical meaning
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TMDPs and XMDPs

Optimality equation and conditions
TMDP optimality equation ≡ XMDP equation with specific assumptions.

XMDPs provide proven optimality conditions and equation.

But solving the general case of XMDPs is too complex.

→ In practice, we turn back to solving TMDPs
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Solving TMDPs

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

Value iteration Bellman backups for TMDPs can be performed exactly if:

L(µ|s, t,a) piecewise constant

R(µ, t, t ′) = rµ,t (t) + rµ,τ (t ′− t) + rµ,t ′(t ′)

rµ,t (t), rµ,τ (τ), rµ,t ′(t ′) piecewise linear

Pµ (t ′), Pµ (t ′− t) discrete distributions

Then V ∗(s, t) is piecewise linear.
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Solving TMDPs

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

What about other, more expressive functions?

How does this theoretical result scale to practical resolution?
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Extending exact resolution
Piecewise polynomial models: L, Pµ , ri ∈Pn.

Degree evolution

Pµ ∈DPA

ri ,V0 ∈PB

L ∈PC

⇒ d◦(Vn) = B + n(A + C + 1)

Stability⇔ A + C =−1.

Exact resolution conditions

Degree stability + exact analytical computations:


Pµ ∈DP−1

ri ∈P4

L ∈P0
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Exact resolution conditions

Degree stability + exact analytical computations:


Pµ ∈DP−1

ri ∈P4

L ∈P0

If B > 4: approximate root finding.
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Extending exact resolution
Piecewise polynomial models: L, Pµ , ri ∈Pn.

Degree evolution

Pµ ∈DPA

ri ,V0 ∈PB

L ∈PC

⇒ d◦(Vn) = B + n(A + C + 1)

Stability⇔ A + C =−1.

Exact resolution conditions

Degree stability + exact analytical computations:


Pµ ∈DP−1

ri ∈P4

L ∈P0

If A + C > 0: projection scheme of Vn on PB.
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And in practice?

Fact (Admitted)

The number of definition intervals in Vn grows with n and does not
necessarily converge.

⇒ numerical problems occur before ‖Vn−Vn−1‖< ε .

e.g. V calculation:

Qn(s, t, a1)

Qn(s, t, a2)

Qn(s, t, a3)

Qn

t
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And in practice?

Fact (Admitted)

The number of definition intervals in Vn grows with n and does not
necessarily converge.

⇒ numerical problems occur before ‖Vn−Vn−1‖< ε .

→ general case: approximate resolution by piecewise polynomial
interval simplification for the value function.

Approximation
↗ degree reduction

↘ interval simplification
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TMDPpoly : Approximate Value Iteration on TMDPs

TMDPpoly polynomial approximation

pout = poly_approx(pin, [l,u],ε,B)
Two phases: incremental refinement and simplification.

I

I1 I2

m
ax

er
ro

r
>

ǫ

pin

first attempt
second attempt
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TMDPpoly : Approximate Value Iteration on TMDPs

TMDPpoly polynomial approximation

pout = poly_approx(pin, [l,u],ε,B)
Two phases: incremental refinement and simplification.

I

I1 I2 I3

pin

pout
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TMDPpoly : Approximate Value Iteration on TMDPs

TMDPpoly polynomial approximation

pout = poly_approx(pin, [l,u],ε,B)
Two phases: incremental refinement and simplification.

Properties

pout ∈PB

‖pin−pout‖∞ ≤ ε

suboptimal number of intervals

good complexity compromise
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TMDPpoly : Approximate Value Iteration on TMDPs

Prioritized Sweeping.

Leveraging the computational effort by
ordering Bellman backups

Perform Bellman backups in states with the
largest value function change.

Moore, A. W. and Atkeson, C. G. (1993).
Prioritized Sweeping: Reinforcement Learning with Less Data and Less Real Time.
Machine Learning Journal, 13(1):103–105.
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TMDPpoly : Approximate Value Iteration on TMDPs

Adapting Prioritized Sweeping to TMDPs.

Pick highest priority state
→ s0

s0
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TMDPpoly : Approximate Value Iteration on TMDPs

Adapting Prioritized Sweeping to TMDPs.

Pick highest priority state
→ s0

Bellman backup
→ V (s0, t)s0

update V (s0, t)
update V (s0, t)
poly approx (V (s0, t))
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TMDPpoly : Approximate Value Iteration on TMDPs

Adapting Prioritized Sweeping to TMDPs.

Pick highest priority state
→ s0

Bellman backup
→ V (s0, t)
Update Q values
→ Q(s, t, a)

s0

s1

s2

s3

a10, µ10

a20, µ20

a30, µ30
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TMDPpoly : Approximate Value Iteration on TMDPs

Adapting Prioritized Sweeping to TMDPs.

Pick highest priority state
→ s0

Bellman backup
→ V (s0, t)
Update Q values
→ Q(s, t, a)
Update priorities
→ prio(s) = ‖Q−Qold‖∞

s0

s1

s2

s3

prio(s1)

prio(s2)

prio(s3)
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TMDPpoly

TMDPpoly in a nutshell

TMDPpoly :


Analytical polynomial calculations
L∞-bounded error projection
Prioritized Sweeping for TMDPs

Analytical operations: option for representing continuous quantities.

Approximation makes resolution possible.

Asynchronous VI makes it faster.
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Illustration — UAV patrol problem
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—
Compute V (s, t), V (s, t) and poly_approx(V (s, t))
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—
Compute U(µ, t), Q(s,a, t) and prio(s)
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Mars Rover
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Mars rover policy

V and π in p = 3 when no goals have been completed yet.
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Mars rover policy

π in p = 3 when no goals have been completed yet — 2D view.
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Contributions

XMDP optimality conditions and equations.

Specific case of TMDPs.

Extending exact resolution of TMDPs.

TMDPpoly allows better resolution of generalized piecewise polynomial
TMDPs (including the exact case).

Optimal value function and policy

Existence of optimality conditions and an optimality equation on V and
π for continuous observable time, discrete event stochastic processes.

V ∗ = LV ∗

π∗ = argmax
a(x)∈A(X)

{
r(s, t,a(x)) +

∫
t ′∈R
s′∈S

γ
t ′−tp(s′, t ′|s, t,a(x))V ∗(s′, t ′)ds′dt ′

}
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Contributions

XMDP optimality conditions and equations.

Specific case of TMDPs.

Extending exact resolution of TMDPs.

TMDPpoly allows better resolution of generalized piecewise polynomial
TMDPs (including the exact case).

TMDP hypothesis

TMDPs are XMDPs with specific hypothesis and a total reward
criterion.
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Contributions

XMDP optimality conditions and equations.

Specific case of TMDPs.

Extending exact resolution of TMDPs.

TMDPpoly allows better resolution of generalized piecewise polynomial
TMDPs (including the exact case).

Exact resolution conditions
Conditions for exact resolution of TMDPs can be slightly extended.

Pµ ∈DPA

ri ∈PB

L ∈PC

⇒


Pµ ∈DP−1

ri ∈P4

L ∈P0

But practical resolution call for approximation.

24 / 45
Temporal Markov Decision Problems — Formalization and Resolution



Background Policies Time and MDPs TMDPpoly Illustration Is that sufficient? iATPI Conclusion

Contributions

XMDP optimality conditions and equations.

Specific case of TMDPs.

Extending exact resolution of TMDPs.

TMDPpoly allows better resolution of generalized piecewise polynomial
TMDPs (including the exact case).

TMDPpoly in a nutshell

TMDPpoly :


Analytical polynomial calculations
L∞-bounded error projection
Prioritized Sweeping for TMDPs

Analytical operations: option for representing continuous quantities.

Approximation makes resolution possible.

Asynchronous VI makes it faster.
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Is that sufficient?

“A well-cast problem is a half-solved problem.”

Initial example: obtaining the model is not trivial.

→ the “first half” (modeling) is not solved.

A natural model for continuous-time decision processes?
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Concurrent exogeneous events

Explicit-event modeling:
a natural description of the systems complexity.

Aggregating the contribution of concurrent temporal processes. . .

. . .
internal
sunlight
weather
other agent
my action

S

. . . all affecting the same state space
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GSMDPs

Generalized Semi-Markov Decision Process

Tuple 〈S,E ,A,p, f , r〉
E Set of events.

A⊂ E Subset of controlable events (actions).

f (ce|s,e) Duration model of event e.

p(s′|s,e,ce) Transition model of event e.

Glynn, P. (1989).
A GSMP Formalism for Discrete Event Systems.
Proc. of the IEEE, 77.

Younes, H. L. S. and Simmons, R. G. (2004).
Solving Generalized Semi-Markov Decision Processes using Continuous Phase-Type
Distributions.
In AAAI Conference on Artificial Intelligence.
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E Set of events.
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f (ce|s,e) Duration model of event e.
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s2

P (s′|s1, e4)

Es2 : e2

e3

a

P (s′|s2, a)
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Modeling claim

A natural model for temporal processes

Observable time GSMDPs are a natural way of modeling stochastic,
temporal decision processes.
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Properties

Markov property

The process defined by the natural state s of a GSMDP does not
retain Markov’s property.

No guarantee of an optimal π(s) policy.

Markovian state: (s,c)
→ often non-observable.
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Properties

Working hypothesis

In time-dependent GSMDPs, the state (s, t) is a good approximation
of the Markovian state variables (s,c).
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Properties

Remark
Even though GSMDPs are non-Markov processes, they provide a
straightforward way of building a simulator.

How can we search for a good policy?
→ Learning from the interaction with a GSMDP simulator.
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Learning from interaction with a simulator

Agent

Simulator

a s′, t′, r

Planning: using model

{
P(s′, t ′|s, t,a)
r(s, t,a) ↘

to get good

{
V (s, t)
π(s, t)

Learning: using samples (s, t,a, r ,s′, t ′)
↗
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Simulation-based Reinforcement Learning

3 main issues:

Exploration of the state space

Update of the value function

Improvement of the policy

How should we use our temporal process’ simulator to learn policies?
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Illustration

This approach is motivated by
problems such as the “subway problem” with

large, hybrid state spaces, many concurrent events,
for which a global model is not available.
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Illustration

Our approach

Improve the policy in the situations which are likely to be encountered.
Evaluate the policy in the situations needed for improvement.
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Model-free, simulation-based local search

Input initial state s0, t0,
initial policy π0,
process simulator.

Goal improve on π0

“simulator” →

“local” →
“incremental π improvement” →

simulation-based

asynchronous
policy iteration

for temporal problems:

iATPI
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Asynchronous Dynamic Programming

Asynchronous Bellman backups

As long as every state is visited infinitely often for Bellman backups on
V or π , the sequences of Vn and πn converge to V ∗ and π∗.
→ Asynchronous Policy Iteration.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996).
Neuro-Dynamic Programming.
Athena Scientific.

iATPI performs greedy exploration

Once an improving action a is found in (s, t), the next state (s′, t ′)
picked for Bellman backup is chosen by applying a.
Observable time⇒ this (s′, t ′) is picked according to P(s′, t ′|s, t,πn).
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Monte Carlo evaluations for temporal problems

Simulating π in (s, t)
⇓((s0, t0),a0, r0, . . . ,(sl−1, tt−1),al−1, rl−1,(sl , tl)
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Monte Carlo evaluations for temporal problems

Simulating π in (s, t)
⇓((s0, t0),a0, r0, . . . ,(sl−1, tt−1),al−1, rl−1,(sl , tl)

)∣∣∣∣∣∣
(s0, t0) = (s, t)
ai = π(si , ti)
tl ≥ T


⇓

ValueSet =

{
R̃(si , ti) =

l−1
∑

k=i
ri

}

Value function estimation

V π(s, t) = E(R(s, t))
Ṽ π ← regression(ValueSet)
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In practice

Algorithm sketch

Given the current policy πn,
the current process state (s, t),
the current estimate Ṽ πn

Compute the best action a∗ with respect to Ṽ πn

Pick (s′, t ′) according to a∗

Until t ′ > T

Compute Ṽ πn+1 for the last(s) episode(s)

But . . .
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Avoiding the pitfall of partial exploration

The R̃(s, t) are not drawn i.i.d. (only independently).
→ Ṽ π is a biased estimator.

Ṽ π is only valid locally→ local confidence in Ṽ π
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Avoiding the pitfall of partial exploration

The R̃(s, t) are not drawn i.i.d. (only independently).
→ Ṽ π is a biased estimator.

Ṽ π is only valid locally→ local confidence in Ṽ π

Confidence function CV

Can we trust Ṽ π(s, t) as an approximation of V π in (s, t)?

CV :

{
S×R → {>,⊥}

s, t 7→ CV (s, t)

Ṽ π(s, t)→ CV (s, t)
π(s, t)→ Cπ(s, t)
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iATPI

iATPI

iATPI:


Asynchronous policy iteration for greedy search
Time-dependency & Monte-Carlo sampling
Local policies and values via confidence functions

Asynchronous PI: local improvements / partial evaluation.

t-dependent Monte-Carlo sampling: loopless — finite — total criterion.

Confidence functions: alternative to heuristic-based approaches.
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iATPI

Given the current policy πn,
the current process state (s, t),
the current estimate Ṽ πn

Compute the best action a∗ with respect to Ṽ πn

Use CṼ πn to check if Ṽ πn can be used
Sample more evaluation trajectories for πn if not
Refine Ṽ πn and CṼ πn

Pick (s′, t ′) according to a∗

Until t ′ > T

Compute Ṽ πn+1 ,CṼ πn+1 ,πn+1,Cπn+1 for the last(s) episode(s)
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Output

A pile Πn = {(π0,Cπ0),(π1,Cπ1), . . . ,(πn,Cπn )|Cπ0(s, t) =>} of
partial policies.
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Preliminary results with iATPI

Preliminary results on ATPI and the subway problem:

Subway problem

4 trains, 6 stations
→ 22 hybrid state variables, 9 actions

episodes of 12 hours with around 2000 steps.
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Preliminary results with iATPI

Preliminary results on ATPI and the subway problem:

With proper initialization, naive ATPI finds good policies.
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Value functions, policies and confidence
functions

How do we write Ṽ , CV , π and Cπ?

→ Statistical learning problem

We implemented and tried several options:

Ṽ incremental, local regression problem.

SVR, LWPR, Nearest-neighbours.

π local classification problem.

SVC, Nearest-neighbours.

C incremental, local statistical sufficiency test.

OC-SVM, central-limit theorem.
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Perspectives for iATPI

iATPI is ongoing work
→ no hasty conclusions

Current work: extensive testing of the algorithm full version.

Still lots of open questions:

How to avoid local maxima in value function space?

Test on a fully discrete and observable problem?

. . . and many ideas for improvement:

Use Vn−k functions as lower bounds on Vn

Utility functions for stopping sampling in episode.bestAction()
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Contributions

Modeling framework for stochastic decision processes: GSMDPs +
continuous time.

iATPI

Modeling claim

Describing concurrent, exogenous contributions to the system’s
dynamics separately.

Concurrent observable-time SMDPs affecting the same state space
→ observable-time GSMDPs.

Natural framework for describing temporal problems.
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Confidence functions

Asynchronous PI: local improvements / partial evaluation.

t-dependent Monte-Carlo sampling: loopless — finite — total criterion.

Confidence functions: alternative to heuristic-based approaches.
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Summarizing the work done

Three ways of reading the thesis:

Modeling of temporal stochastic decision processes:

implicit-event (extended TMDP)
and

explicit-event (observable time GSMDP)
Theory General framework of XMDPs, optimality conditions and

equations.

Algorithms for time-dependent policy search:
model-based asynchronous value iteration (TMDPpoly )

and
model-free local search for policy iteration (iATPI).
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Thank you for your attention!
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International Conferences

Rachelson, E., Teichteil, F., and Garcia, F. (2007a).
Temporal coordination under uncertainty: initial results for the two agents case.
In ICAPS Doctoral Consortium.

Rachelson, E., Garcia, F., and Fabiani, P. (2008a).
Extending the Bellman Equation for MDP to Continuous Actions and Continuous Time in
the Discounted Case.
In International Symposium on Artificial Intelligence and Mathematics.

Rachelson, E., Quesnel, G., Garcia, F., and Fabiani, P. (2008b).
A Simulation-based Approach for Solving Generalized Semi-Markov Decision Processes.
In European Conference on Artificial Intelligence.

Rachelson, E., Quesnel, G., Garcia, F., and Fabiani, P. (2008c).
Approximate Policy Iteration for Generalized Semi-Markov Decision Processes: an
Improved Algorithm.
In European Workshop on Reinforcement Learning.
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French-speaking Conferences

Rachelson, E., Fabiani, P., Farges, J.-L., Teichteil, F., and Garcia, F. (2006).
Une approche du traitement du temps dans le cadre MDP : trois méthodes de découpage
de la droite temporelle.
In Journées Françaises Planification Décision Apprentissage.

Rachelson, E., Teichteil, F., and Garcia, F. (2007b).
XMDP : un modèle de planification temporelle dans l’incertain à actions paramétriques.
In Journées Françaises Planification Décision Apprentissage.

Rachelson, E., Fabiani, P., and Garcia, F. (2008a).
Un Algorithme Amélioré d’Itération de la Politique Approchée pour les Processus
Décisionnels Semi-Markoviens Généralisés.
In Journées Françaises Planification Décision Apprentissage.

Rachelson, E., Fabiani, P., Garcia, F., and Quesnel, G. (2008b).
Une Approche basée sur la Simulation pour l’Optimisation des Processus Décisionnels
Semi-Markoviens Généralisés (english version).
In Conférence Francophone sur l’Apprentissage Automatique.
Best student paper, awarded by AFIA.
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Talks and presentations

ONERA DCSD, UR-CD, Toulouse (April 2006).
Planification dans l’incertain — Introduire une variable temporalle continue.

INRA-BIA, Toulouse (May 25th, 2007).
Planifier en fonction du temps dans le cadre MDP.

ONERA DCSD, UR-CD, Toulouse (February 3rd, 2008)
Formalisation et résolution de problèmes de Markov temporels par couplage avec VLE.
Coupled with “Multi-modélisation et simulation : la plate-forme VLE” by G. Quesnel.

Intelligent Systems Laboratory, Technical University of Crete (July 29th,
2008)
Simulation-based Approximate Policy Iteration for Generalized Semi-Markov Decision
Processes.
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Teaching activities

Non-linear optimization.
lecturing (2007, 2008), tutoring (2006) — ENAC

Probabilities and Harmonic analysis, introduction module.
lecturing (2006) — SUPAERO

Reinforcement Learning and Dynamic Programming
tutoring (2008) — ISAE-SUPAERO

Stochastic Processes
tutoring (2007, 2008) — SUPAERO then ISAE-SUPAERO

Optimization and numeric computation
tutoring (2006, 2007, 2008) — SUPAERO then ISAE-SUPAERO

MatLab introduction
tutoring (2006, 2007) — SUPAERO

Harmonic analysis
tutoring (2006) — SUPAERO
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Algorithmic perspectives
Model based approaches:

Biasing PS in TMDPpoly to obtain better convergence speed.

Better algorithms (and implementation) for POLYTOOLS .

XMDPpoly ?

Policy Iteration for XMDPs? TMDPs?

. . .

The iATPI perspective:

Discounted criteria?

Statistical learning for iATPI, sound algorithms and efficient
implementations.

Avoiding local minima with iATPI.

. . .
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Perspectives: models and foundations

Time and stochastic processes:

Foundations of time-explicit decision processes: lifting the mathematical
assumptions in the XMDP model

Relation between GSMDP and POMDP: defining a belief state from the
(s,c) state
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Exploration vs exploitation?

How does iATPI compare to other methods concerning
the exploration vs. exploitation trade-off?

Automated balancing through “optimism”:

“Optimism in the face of uncertainty”
Rmax
Admissible heuristics

Encourages early exploration.
Automatically balances the trade-off.

⇒ Very good for online learning.

iATPI suggests an “offline/online” alternative:

abandon global exploration for incremental, episode-based exploration.
explore what we need locally for evaluation, use it for local improvement,
then look outside.

No exploration “enc/discouragement”.
Local search idea

⇒ Good for “cautious” search?
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Other illustrations of GSMDPs

Should we open more lines ?
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Other illustrations of GSMDPs

Airplanes taxiing management

8 / 19
Temporal Markov Decision Problems — Formalization and Resolution



Other illustrations of GSMDPs

Adding or removing trains ?
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Other illustrations of GSMDPs

Onboard planning for coordination
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Other illustrations of GSMDPs

The rover’s declared
most probable trajectory

is .

The fire should
change according to

t

⇒ My action policy is:

t

in s1: a3 a7 a1

in s2: a2 a6 a1

in s3: a3 a2

a3

Consequence events
of the UAV’s declared
most probable actions:

ev5 ev1 ev6
t

Probability of
successfully taking road 3

t

Current state

x1 = 3 x3 = 1 x5 = 0
x2 = 3 x4 = 2 x6 = 8

⇒ My action policy is:

tin s1: a3 a7 a1

in s2: a2 a6 a1

in s3: a3 a2

a3

communication channel
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Waiting or being idle?

tt1 T

explicit wait a

tt1 t2

T1

T2

implicit wait

implicit wait

a

a ′

being idle→ let the system change continuously
discrete event process→ stepwise changes in the system

From the execution point of view:

being idle→ let the system change by itself
⇒ interest of W function or explicit-event representations (a∞).

But this is different from the TMDP’s wait .
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DECTS

GSMPs = concurrent temporal stochastic processes
DEVS = generic description of discrete events systems

model M

pin
n , vin

n

...pin
0 , vin

0

XM

pout
m , vout

m

...pout
0 , vout

0

YM
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DECTS

Temporal decision process ≡ input port aDECTSa
tions
a

observations
(s′, r)

step(a) ≡
δext(a, sinternal)
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DECTS

An optimization process ≡ sequence of operations involving
experiments with a DECTS model.

DECTSlearner
exe
utivemodel DECTS

re
ursivesimulationmodeldynami
ally 
reate or 
loneDECTS models on the �y andlink them with the learner

re
eive information fromlinked models
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DECTS

A DECTS learner is an executive (high-level) discrete events system,
creating and controling a set of DECTS experiments.

It has internal decision objects (policies, values, etc.)

Nota: Actor-Critic vs. DECTS? Actor-Critic is the architecture of the
DECTS learner’s decision objects.
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iATPI as a DECTS

0 0

0

0

0

∞

∞

begin
end
trial

idle

decide

info action

choose

create and init
"trial" DECTS

destroy "trial"

send action to "trial"
destroy "eval" DECTS

create "eval" DECTS
by cloning "trial" send action

to "eval"
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Database iATPI
H0 hypothesis

The asymptotical convergence of Q̃n(s,a) towards a distribution
N (Q(s,a),σ) is quick.

Theorem (PAC-bound guarantee)

Qn(s,a) is an ε-estimate of Q(s,a) with probability p = erf
(

ε
√

n
σ

Q
n
√

2

)
In practice

Na Stop the rollouts in (s,a) whenever σQ
n ≤ ε

√
n

erf−1(p)
√

2
.

Nepisodes Stop running episodes for the current policy when the
Q(s0,a∗) has σQ

n lower than the bound.

rollouts Early stopping if a state with σM
n ≤ ε

erf−1(p)
√

2
is

encountered.
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Mars rover

V and π in p = 3 when no goals have been completed yet.
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Mars rover

π in p = 3 when no goals have been completed yet — 2D view.
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Take Picture

move_to_2
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Analytical resolution of GSMDPs

[Younes and Simmons, 2004]→ approximate all duration models
f (τ|s,e) by chains of exponential distributions.

Phase-type distributions.
Introduce abstract states for the nodes in phase-type distr.

Memoryless exponential distributions turn the GSMDP into a CTMDP.

Resolution by uniformization.

Younes, H. L. S. and Simmons, R. G. (2004).
Solving Generalized Semi-Markov Decision Processes using Continuous Phase-Type
Distributions.
In AAAI Conference on Artificial Intelligence.
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GSMDPs and POMDPs

Observations and hidden process

The natural state s of a GSMDP corresponds to observations on a
hidden Markov process (s,c).

{
(s,c) ↔ hidden state

s ↔ observations

Working hypothesis

In time-dependent GSMDPs, the state (s, t) is a good approximation
of the associated POMDP’s belief state.

iATPI → simulation-based, asynchronous policy iteration
for stochastic shortest path POMDPs.
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Computing V from V

0 1 2 3 4 5
0

1

2

t′

V (s, t′)

0 1 2 3 4 5
0

1

2

t′

f(t′) = V (s, t′)− kt′

t

g(t) = sup
t′≥t

f(t′)

0 1 2 3 4 5
0

1

2

t

V (s, t) = kt + g(t)

0 1 2 3 4 5
0

1

2
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Asynchronous Policy Iteration

Asynchronous Bellman backups

As long as every state is visited infinitely often for Bellman backups on
V or π , the sequences of Vn and πn converge to V ∗ and π∗.

Examples

Unordered V -backups (alternate π-backups) VI
Asynchonous V -backups (alternate π-backups) Async VI,

Prio. Sweeping,
RTDP, . . .

Unordered, alternate 1 π-backup / m V -backups (Modified) PI
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iATPI

Main loop(π0 or Ṽ0, s0, t0, T , Nepisodes)

loop
ValueSet.reset(), ActionSet.reset()
for i = 1 to Nepisodes do

σ .reset()
episode.reset(s0, t0)
while t < T do

a = episode.bestAction()
episode.activateEvent(a)
((s′, t ′), r)← episode.step()
σ .add((s, t),a, r)
t ← t ′

(ValueSet,ActionSet).merge(convert(σ))
Ṽn,CṼn ,πn,Cπn ← train(ValueSet,ActionSet)
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Main loop(π0 or Ṽ0, s0, t0, T , Nepisodes)

loop
ValueSet.reset(), ActionSet.reset()
for i = 1 to Nepisodes do

σ .reset()
episode.reset(s0, t0)
while t < T do

a = episode.bestAction()
episode.activateEvent(a)
((s′, t ′), r)← episode.step()
σ .add((s, t),a, r)
t ← t ′

(ValueSet,ActionSet).merge(convert(σ))
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iATPI

episode.bestAction()

for a ∈ As do
Q̃(a) = 0, n = 0
while not enough samples for Q̃(a) do

Q̃(a)← Q̃(a) + 1
n (episode.rollout(a)− Q̃(a))

return argmax
a∈A

Q̃(a)
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iATPI

episode.rollout(a)

rolloutEpisode(episode)
rolloutEpisode.activateEvent(a)
((s′, t ′), r)← rolloutEpisode.step()

if CṼn−1 (s′, t ′) => then
return r + Ṽn−1(s′, t ′)

else
Q← r , s← s′, σr ← /0
while rollout unfinished do

a = πn−1(s)
rolloutEpisode.activateEvent(a)
((s′, t ′), r)← rolloutEpisode.step()
Q← Q + r
σr .add((s, t), r)

Ṽn−1,CṼn−1 ← incTrain(convert(σr ))
return Q
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iATPI

Output

A pile Πn = {(π0,Cπ0),(π1,Cπ1), . . . ,(πn,Cπn )|Cπ0(s, t) =>} of
partial policies.
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Models map

MP SMP GSMP

MDP SMDP GSMDP

SMDP+,
TMDP,
XMDP
(part II)

GSMDP with
observable time

(part III)

(a)

(a) (b)

(b)

(b)

(c) (c) (c)

(d) (d) (d)

(a) add continuous sojourn time
(b) add concurrency
(c) add action choice
(d) add observable time
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