
Temporal Markov Decision Problems

—

Formalization and Resolution

—

THESIS

submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

delivered by the

University of Toulouse
Institut Supérieur de l’Aéronautique et de l’Espace

in the field of Artificial Intelligence.

Presented and defended by

Emmanuel Rachelson

on March 23rd, 2009.

—

JURY
Patrick Fabiani Ingénieur de recherche — ONERA, thesis advisor.
Frédérick Garcia Directeur de recherche — INRA, thesis advisor.
Michail G. Lagoudakis Assistant Professor — Technical University of Crete.
Michael Littman Professor — Rutgers University.
Rémi Munos Directeur de recherche — INRIA.
Olivier Sigaud Professeur — Université Paris 6.
Olivier Teytaud Chargé de recherche — INRIA.

Abstract

This thesis addresses the question of planning under uncertainty within a
time-dependent changing environment. Original motivation for this work
came from the problem of building an autonomous agent able to coor-
dinate with its uncertain environment; this environment being composed
of other agents communicating their intentions or non-controllable pro-
cesses for which some discrete-event model is available. We investigate
several approaches for modeling continuous time-dependency in the frame-
work of Markov Decision Processes (MDPs), leading us to a definition
of Temporal Markov Decision Problems. Then our approach focuses on
two separate paradigms. First, we investigate time-dependent problems
as implicit-event processes and describe them through the formalism of
Time-dependent MDPs (TMDPs). We extend the existing results con-
cerning optimality equations and present a new Value Iteration algorithm
based on piecewise polynomial function representations in order to solve
a more general class of TMDPs. This paves the way to a more general
discussion on parametric actions in hybrid state and action spaces MDPs
with continuous time. In a second time, we investigate the option of sep-
arately modeling the concurrent contributions of exogenous events. This
approach of explicit-event modeling leads to the use of Generalized Semi-
Markov Decision Processes (GSMDP). We establish a link between the
general framework of Discrete Events Systems Specification (DEVS) and
the formalism of GSMDP, allowing us to build sound discrete-event com-
patible simulators. Then we introduce a simulation-based Policy Iteration
approach for explicit-event Temporal Markov Decision Problems. This
algorithmic contribution brings together results from simulation theory,
forward search in MDPs, and statistical learning theory. The implicit-
event approach was tested on a specific version of the Mars rover planning
problem and on a drone patrol mission planning problem while the explicit-
event approach was evaluated on a subway network control problem.

Keywords

Decision under uncertainty, Markov Decision Processes, hybrid time-
dependent planning problems, modeling of time-dependent stochastic de-
cision processes, control of implicit and explicit event-driven processes.

ii

Acknowledgements

When the time comes to write the acknowledgements of a doctoral thesis, it means the
manuscript is finished, or in its last stages of corrections. At least is this my case and it is
with the mixed feelings of relief (this long writing is finished), pleasure (these last years have
simply been extraordinary for me) and gratitude, that I start these last pages.

First of all, I would like to thank Rémi Munos and Olivier Sigaud, the two “rapporteurs”
of the thesis for accepting to review this (long) document.

My next thanks go to the whole thesis jury for accepting to read the manuscript and
attend the defense.

Then I would like to mention and thank the ONERA and all the personnel of the “System
Control and Flight Dynamics” department for making this thesis financially and materially
feasible. My gratitude goes in particular to the “Decision and Control” research team for
providing a very welcoming and warm environment as well as high quality research stimuli
during these last three years. There are too many people to mention here, but my gratitude
goes to them all for making these years both an human and a scientific experience.

I also wish to thank the people with whom I had the occasion to work, at LAAS-CNRS
and in the “Biometry and Artificial Intelligence” research team of INRA.

Similarly, as I look back on these three years, I realize I am grateful for the many rich
and challenging discussions I had with members of the MDP and Reinforcement Learning
communities: I found many passionate people, working in a challenging domain and willing
to share about their research.

I would also like to thank Sylvie Thiébaux in particular for all the advice and support
she gave me during this last year. I wish you a nice trip back to Australia and look forward
to hearing from you.

As mentioned people become closer and closer to my thesis’ everyday life, I would like
to express my gratitude to Jean-Loup Farges. At the end of my M.Sc. thesis, I did thank
you already for your “subtle and efficient support”. I did not realize at that time how true
it was: Jean-Loup has been a rock, present and available at all times throughout the the-
sis, expressing his criticism on unexpected topics which greatly contributed to the rigor and

iii

quality of this work.

While we were sharing the same office during my M.Sc. thesis, Florent Teichteil already
took an active influence on my research ideas. Thank you for all these four years, for your
advices and your support.

Then I would like to thank Patrick Fabiani, my first advisor, who started this thesis with
— I guess — a completely different research idea than what I actually began investigating,
but who found an interest in my “reshaped” topic and encouraged me to go further. The
incredible energy you put into more or less successful attempts at being available for me only
matches the accuracy of your advices.

Frédérick Garcia has been, I suppose, the perfect thesis advisor for me. I cannot make
a list of all the reasons for which I should thank you: it is a whole, which starts with your
kindness and goes all the way to the passion you put into research. In hard times as well as
in good ones we exchanged more than just scientific ideas.

I guess these three years would not have been the same without the rather surprising
group of Ph.D. students we were. So, quite impolitely since I include myself in the group,
I would like to thank us all for all the good and the bad times we had all together at work
as well as outside. These occasions cover too many times and places to mention. My thesis
would never have been the same without us.

I would also like to address a deep and grateful thank to the anonymous inventor of the
“coinche” (or “belote contrée”) game. I owe you countless hours of frustration, discussions
and strategic pleasure1.

There are two friends and colleagues I would like to thank in particular. Let me start
with Gregory Bonnet. Thanks for surviving to three years with me in the same office, your
patience is legendary my friend! Thanks also for all the insightful discussions we had: on
multi-agent systems, on bad and good movies, on Noam Chomsky, on the topology of pota-
toes and for the unforgettable “Subotäı the magnificent”.

Finally, I cannot forget to mention and thank Julien Guitton. From your very accurate
and refreshing points of view on planning, to the most improbable and solid of friendships,
I have thousands of reasons to thank you. Let me simply thank you for the countless hours
we spent talking about nothing and everything. Please collect the prize for the ONERA
“coinche” championship we just won for the two of us.

—

I dedicate this thesis to all my friends, past and present.
You know how important you are to me.

1I must also mention that I owe you some inspiration for my research ideas, please contact me for royalties
and quotations.

iv

Contents

Abstract i

Acknowledgements iii

Contents v

Notation conventions xi

I Introduction 1

1 Taking good decisions: from examples to Temporal Markov Decision Prob-
lems 3
1.1 The question of decision . 3

1.1.1 Formalizing Decision . 5
1.1.2 From Decision Theory to Discrete-Time Stochastic Optimal Control . 7

1.2 Planning and Learning to act . 7
1.2.1 The problem of Planning . 9
1.2.2 Deciding from experience: Reinforcement Learning 10

1.3 Time, uncertainty and sequential decision problems 11
1.3.1 Examples . 11
1.3.2 Characterizing temporal problems . 15

2 Temporal Markov Decision Problems — Modeling 17
2.1 Markov Decision Processes . 17

2.1.1 Formalism . 17
2.1.2 Policies, criteria and value functions 18
2.1.3 Policy evaluation and optimality equation 20
2.1.4 Q-values . 21
2.1.5 Optimizing policies . 22

2.2 Time and MDPs . 24
2.2.1 Does time appear in standard MDPs? 24
2.2.2 From MDP to SMDP: introducing uncertain durations 25
2.2.3 Some other models taking time partially into account 27
2.2.4 Making time observable: the TMDP model 27

v

Contents

2.2.5 Concurrency as the origin of complexity 29
2.2.6 Models map . 31

2.3 Similarities and differences with “classical” MDP problems 31
2.3.1 Three different meanings for a single variable 32
2.3.2 Redefining the notion of horizon . 32
2.3.3 Exploiting the structure of time-dependent problems 33

3 Thesis outline 35

II Planning with Continuous Observable Time in Markov Decision Pro-
cesses 37

4 Bridging the gap between SMDP and TMDP: the SMDP+ model 43
4.1 Making time observable in SMDPs . 43
4.2 Idleness in the SMDP+ model . 45
4.3 Then what is the difference between waiting and idleness? 47
4.4 Defining policies . 48
4.5 Link between TMDP and SMDP+ . 48

4.5.1 TMDPs are a special case of SMDP+ 49
4.5.2 Dynamic programming resolution of TMDPs 50
4.5.3 Policy equivalence . 52
4.5.4 Generic nature of TMDP policies . 54

4.6 Conclusion . 54

5 Solving TMDPs via Dynamic Programming 57
5.1 Optimality equations and value function properties 57
5.2 Piecewise polynomial functions . 58
5.3 Finding a closed-form solution to Bellman’s equation 59
5.4 Bounding the polynomials’ degree . 63
5.5 Is it possible to extend the exact resolution? 64

6 The TMDPpoly algorithm: solving generalized TMDPs 67
6.1 Extending exact TMDP resolution: some conclusions and properties 67
6.2 Exact calculation of Bellman backups . 68
6.3 Prioritized sweeping . 73
6.4 Approximate TMDP optimization . 77

6.4.1 Approximate Value Iteration . 78
6.4.2 Polynomial degree reduction and interval number minimization 80

6.5 The TMDPpoly algorithm . 84

7 Implementation and experimental evaluation of the TMDPpoly algorithm 85
7.1 Implementation choices . 85
7.2 Simple examples and results with the TMDPpoly planner 86

7.2.1 Two simple test examples: the three states problem 86
7.2.2 Optimisation results . 87
7.2.3 Metrics . 91

7.3 The Mars rover problem . 92
7.3.1 Problem definition . 92
7.3.2 Optimization results . 98

7.4 The UAV patrol problem . 107

vi

Contents

7.4.1 Problem definition . 107
7.4.2 Optimization results . 109

7.5 Conclusion . 116

8 Generalization: the XMDP model 119
8.1 Hindsight on the TMDP model: what is the “wait” action? 119
8.2 A model with hybrid state and action spaces and with observable continuous

time . 121
8.2.1 Model definition . 121
8.2.2 Emphasizing the place of time . 122
8.2.3 Reward model . 122
8.2.4 Policies and criterion . 123
8.2.5 Summarizing the XMDP’s hypothesis 125

8.3 Extended Bellman equation . 126
8.3.1 Policy evaluation . 126
8.3.2 Bellman operator . 128
8.3.3 Lifting some of the previous assumptions 132
8.3.4 Existence of an optimal policy . 134
8.3.5 Parametric formulation of Dynamic Programming 135

8.4 Back to the TMDP framework . 136
8.5 Conclusion on the XMDP framework . 139

9 Perspectives: evolutive partitioning of time 141
9.1 Definitions and general idea . 141
9.2 Evolution of decision intervals and actions by solving a sequence of discrete

problems . 143
9.2.1 Algorithm overview . 143
9.2.2 The method in detail . 143
9.2.3 Related work and conclusion . 147

10 Conclusion 149
10.1 “Take-away” messages . 149
10.2 Perspectives . 150
10.3 Opening . 151

III Controlling Time-dependent Stochastic Systems with Concurrent
Exogenous Events 153

11 Concurrency: an origin for complexity 157
11.1 The complexity of writing the model for stochastic temporal problems 157
11.2 Generalized Semi-Markov Processes . 158
11.3 DEVS modeling . 161

11.3.1 Five levels of Discrete Events Systems Specification 161
11.3.2 Atomic models . 162
11.3.3 Coupled models . 164
11.3.4 Abstract graphical representation . 165

11.4 GSMPs and DEVS models . 165
11.5 MDPs, continuous time and concurrency . 168

11.5.1 Generalized Semi-Markov Decision Processes 168
11.5.2 Controlling GSMDPs . 170

vii

Contents

11.5.3 Introducing continuous observable time in GSMDPs 172
11.6 Conclusion . 172

12 Real-Time Policy Iteration 175
12.1 Asynchronous Dynamic Programming . 176

12.1.1 Origins of Asynchronous Dynamic Programming 176
12.1.2 Asynchronous Policy Iteration . 177

12.2 Approximation for Policy Iteration . 179
12.2.1 Why Policy Iteration? . 179
12.2.2 Convergence of Approximate Policy Iteration 180
12.2.3 Approximation methods . 182

12.3 Heuristic forward search for Asynchronous Value Iteration 183
12.3.1 Real-Time Dynamic Programming . 183
12.3.2 Labeled RTDP: asynchronous backward-forward Dynamic Programming185
12.3.3 Related approaches and extensions . 186

12.4 Real Time Policy Iteration . 188
12.4.1 Using greedy simulation to select Sn 188
12.4.2 Evaluating π, the specific case of time-dependent problems 189

12.5 Conclusion . 190

13 Simulation-based local incremental policy search for observable time GSMDPs:
the ATPI algorithm 191
13.1 General idea . 191
13.2 Approximate Temporal Policy Iteration . 192

13.2.1 Algorithm overview . 192
13.2.2 Greedy simulation for exploration . 194
13.2.3 Simulation-based policy evaluation . 195
13.2.4 Value function regression . 196
13.2.5 Online policy instantiation: Policy Iteration without policy storage . . 196
13.2.6 What about Markov’s property? . 197
13.2.7 Continuous or hybrid state variables? 199

13.3 First results with ATPI on the subway problem 200
13.3.1 The subway problem . 200
13.3.2 Optimization results . 201
13.3.3 Discussion . 204

13.4 Conclusion . 208

14 The improved ATPI algorithm 211
14.1 Defining discrete events, controllable, temporal systems 211

14.1.1 Core properties of DECTS . 211
14.1.2 Controlling DECTS and modeling a learner 214
14.1.3 Why DECTS? . 217

14.2 Revisiting the idea of ATPI . 217
14.2.1 The initial ATPI intuition: simulating to explore and evaluate 217
14.2.2 The need for generalization . 218
14.2.3 The problem of confidence . 218
14.2.4 Using the confidence function to improve ATPI 219
14.2.5 Storing policies for ATPI . 219
14.2.6 A full statistical learning problem . 220

14.3 The improved ATPI algorithm . 221
14.3.1 Algorithm overview . 221

viii

Contents

14.3.2 Writing the algorithm in the framework of DECTS 222
14.4 First experience with iATPI in practice — difficulties and initial results . . . 224

14.4.1 Statistical Learning tools . 224
14.4.2 Subsampling for iATPI . 227
14.4.3 An example of implementation using LWPR and MC-SVM 228
14.4.4 Full storage iATPI . 236

14.5 Conclusion . 240

15 Conclusion 243
15.1 Summary . 243
15.2 Perspectives . 244

IV Conclusion 245

Appendix 251

A Computing complex operations on piecewise polynomial functions 251
A.1 Basics . 251
A.2 Common dangers of coefficient manipulation 251
A.3 Usual operations: polynomial arithmetic, evaluation and root finding 252
A.4 Convolutions . 254

A.4.1 Preliminary: convolution of a piecewise polynomial function with any
probability distribution function . 254

A.4.2 Problem introduction . 254
A.4.3 Breaking the problem into pieces . 256
A.4.4 Preliminary calculations . 257
A.4.5 Calculating

∫ δ
γ f(x)g(t− x)dx . 259

A.4.6 Calculating
∫ t−δ
γ f(x)g(t− x)dx . 259

A.4.7 Calculating
∫ t−δ
t−γ f(x)g(t− x)dx . 260

A.5 Common difficulties . 261
A.5.1 The case of Sturm’s theorem . 261
A.5.2 Finding extrema . 261

B Short reminder of Support Vector Regression 263
B.1 Least-Squares Linear Regression . 263
B.2 ε-insensitive Support Vector Regression . 263
B.3 Variations on the theme of kernel-based regression 266

List of Figures 267

List of Algorithms 271

Bibliography 273

ix

Contents

x

Notation conventions

∗ The convolution operator
‖ · ‖I,∞ ‖g‖I,∞ = sup

x∈I
|g(x)|

δ Process step number, similar to decision epoch number
ρ Execution path
σ augmented SMDP+ state, corresponding to (s, t)
µ TMDP outcome
A Action space
a Action
aδ The action at decision epoch δ
an In finite action spaces, this is the nth element of A

F (τ |s, a) SMDP duration model (cumulative distribution function)
f(τ |s, a) SMDP duration model (probability density function)

L Bellman operator
Lπ Policy evaluation operator

Pr(X = x) Probability that random variable X is equal to x
P (s′|s, a) MDP transition model

R MDP reward model per transition: R(s, a, s′)
r MDP reward model per pair state-action: r(s, a)
S State space
s State
sδ The random variable “state” at process’s step δ
sµ state associated with outcome µ in a TMDP model
sn In finite state spaces, this is the nth element of S
V ∗ Optimal value function

V π∗ , V π Value function of an optimal policy / of policy π

xi

Contents

xii

Part I

Introduction

1

1
Taking good decisions: from examples to Temporal Markov

Decision Problems

This introductory chapter aims at providing a general overview of the context in
which we will work throughout the thesis, progressively focusing on the specific
domain at hand. We start at the “human” level, considering the general question
of Decision and its different facets, motivating the various attempts at formaliz-
ing this question and highlighting the outreach of formal approaches. Then we
enumerate a number of characteristics which define different fields in the study
of decision-making, in order to position our topic of interest among the different
branches of Decision Sciences. Our interest goes to the domains of Planning under
Uncertainty and Reinforcement Learning in which we finally outline the class of
Temporal Markov Decision Problems.

1.1 The question of decision

“A human being is a deciding being.”
Viktor E. Franckl — Man’s Search for Meaning

Let us introduce this thesis with questions of various importances:

I Turn right or turn left? Which is the best way to go to work?

I Buy company A’s shares or prefer company B’s? Buy them now or later?

I Invest in the Third World’s growth today or develop the inner market to participate
later?

I Which dimensions should I choose for this aircraft beam?

I Should I plan a meeting with Fred before writing this report?

I Should I intervene when I see a man being attacked?

I How do I assign priorities to message transmissions in this network?

I Is this group of pixels a building? A road?

3

Chapter 1. Taking good decisions: from examples to Temporal Markov Decision Problems

I How to optimize the maintenance of this satellite constellation?

Performing as well as possible, taking good decisions, choosing the correct (best?) option,
all these constitute a common requirement and somehow a natural behavior in everyday life.
This problem of taking decisions — and, preferably, taking good decisions — is, at the same
time, one of the first problems to which we are confronted in our life and, paradoxically, one
of the hardest dilemmas to solve, even with a lifetime of experience.

Taking a decision implies considering many aspects: ethics, physical constraints, long-
term consequences, customer requirements, etc. The notions of intelligence, adaptability,
responsibility — shared by various domains such as Philosophy, Psychology, Artificial Intelli-
gence, Control Theory, Operation Research, etc. — all find their motivation in the question
of taking the right decision and applying it. If one takes the idea of choice away, these three
notions loose most of their meaning.

An old dream of Artificial Intelligence is to build an autonomous thinking machine, able
to take decisions by itself. Since the early years of Computer Science and Artificial Intelli-
gence, the definition of such an “intelligence” has shifted from the Computer Science-inspired
notion of being able to solve hard computational problems, towards an idea of decisional au-
tonomy. From a vision centered on the computer — the super-calculator, solving difficult
combinatorial problems —, Artificial Intelligence has emerged with a vision focused on the
behavior of agents which mimic, adapt or create decisions as intelligent beings.

This general consideration and large problematic spanned the — broadly-speaking —
Sciences of Decision, to capture the common features of decision problems. Inside this do-
main, one can distinguish many fields, relative to specific problems, characteristics and con-
straints. Taking a relevant decision is intrinsically a different problem for a medical decision
support system, a path planner, a mechanical structure optimizer, a network flow controller,
a Backgammon player, etc. Formalizing the different decision problems and developing tools
and ideas to solve them leads to these different fields. These fields focus either on a specific
Mathematical framework, a given problematic or a family of methods and tools. From the
Artificial Intelligence point of view, formalizing and solving Decision problems consists in
constructing relevant Mathematical formulations (models), analysis tools and computational
methods for such problems.

Deciding is often linked with the notion of separating bad solutions from good ones, and
eventually choosing the “best” solution. Therefore, Decision and Optimization seem to be
two close topics. But the notion of optimal decision is far from being unique. Everybody
reasonably agrees that being healthy and rich is better than sick and poor, but choices are
rarely that clear. How do we quantify the trade-off between the number of car accident
victims and the amount of money one puts into road security policies? Is this quantification
a universal value for a human life? Formalizing Decision problems is a matter of expressing
the criteria, the compromises, the context and constraints in a given language, which we use
to automate reasoning in order to find the good decision for these specific criteria, compro-
mises, contexts and constraints.

While this very short introduction does not pretend to cover all of the Mathematical
extensions of Decision Sciences1, we will try, in the following paragraphs, to give a compre-

1Is it possible to do research in a field and pretend being able to cover its full span?

4

1.1. The question of decision

hensive view of some sub-categories related to the Mathematical analysis of Decision.

1.1.1 Formalizing Decision

Taking a piece of paper and writing down a Decision problem implies extracting variables,
relations between variables and knowledge about the temporal evolution of these relations;
it also implies defining deciding agents which all have different criteria supporting their de-
cision. Different mathematical tools help formalizing decision problems depending on the
features they present for the above variables, relations, dynamics, agents and criteria; they
define different branches of Decision Sciences. The next paragraphs suggest a quick walk
through these features, illustrating different facets of Decision Theory. Introducing these
general considerations will also help in order to specifically target the class of problems ad-
dressed in this thesis.

Variables?

The very nature of the decision variables conditions the way the problem is written. Decid-
ing the dimensions for the aircraft beam is by nature a continuous problem, thus implying
real-valued variables. Analysis is the branch of Mathematics studying continuous spaces,
the associated topology and properties.

On the other hand, finding the right number of satellites to correctly broadcast a tele-
vision service is a discrete problem by nature: one cannot send half a satellite. Optimizing
over ordered discrete quantities is often referred to as the field of Combinatorial Optimization.

Lastly, finding the right sequence of movements to solve the “towers of Hanoi” problem
is a matter of searching through many combinations of unordered logical predicates which is
the domain of Logic.

Still, many problems need a mixture of these types of variables to describe all the objects
they consider. However, most of the techniques we know for solving mathematical problems
are restricted to a specific class of variables. For instance, Non-Linear or Linear Programming
deal with continuous quantities, Integer Linear Programming considers ordered variables,
Predicate (or First-Order) Logic deals with Boolean values, etc. Algorithms designed to
solve Decision problems usually build on these mathematical foundations and still today,
have a hard time mixing decision variables of different natures together in the general case.
Constraint Programming is maybe one of the most successful approaches on this topic. These
modeling requirements orient the resolution towards specific fields and tools to find the right
decision. So, the nature of decision variables defines low-level theory branches and domains
dedicated to solving specific types of models.

Relations?

Once we have determined the nature of our variables, we need to describe how they interact.
Classes of relations between variables spanned different research fields, each focusing on a
specific feature. For example, Convex and Non-Linear Optimization deal with minimizing
non-linear cost functions under continuous constraints. Thus, choosing a modeling frame-
work (differential equations, constraint networks, etc.) is a key to the family of problems
which can be represented and to the class of algorithms which can be applied to the problem

5

Chapter 1. Taking good decisions: from examples to Temporal Markov Decision Problems

at hand. Each of these frameworks is a subcategory of the Mathematical tools for Decision.

An important question concerning the relations between decision variables is related to
the uncertainty in the knowledge we have. For example, the decision of buying or selling
shares in a stock exchange market is based on imprecise knowledge about the intentions of
other commercial agents, the evolution of prices, etc. One usually distinguishes between de-
terministic problems and problems of decision under uncertainty. The latter can be modeled
in different ways: probabilistic knowledge, possibilistic or fuzzy description, contingencies,
etc., thus defining the corresponding number of research fields.

Dynamics?

Then comes one of the most important distinctions inside Decision Sciences. The question
of knowing how relations between variables change, underlie the difference between single
and sequential Decisions. If the problem is to classify a group of pixels inside an image as
belonging to the same physical object, the decision is static in the sense that the choice has
no immediate consequence: the decision algorithm’s output is a unique decision. On the
other hand, if the problem is to find the right sequence of actions in order to make tea using
the basic ingredients, the solution involves a sequence of actions (boil the water — put the
tea in a cup — put sugar in the cup — add the water) found by analyzing the interaction
between decisions (actions) with the decision context (the environment). Fields as Optimiza-
tion or Statistical Learning often deal with single decisions while domains as Planning or
Reinforcement Learning explore the problem of sequential decisions.

Then one needs to distinguish between many possibilities concerning the problem’s dy-
namics:

• Is there a known model of the decision context? When such a model is explicitly given,
sequential decision-making is the field of Planning.

• Are the variables observable? Partially observable? For instance, doctors often have to
make a diagnosis concerning organs which they do not observe directly. Modeling par-
tial observability yields different branches of Decision; for example Bayesian Inference
deals with the single decision case in Bayesian probabilistic settings.

• If a sequence of decisions is involved, are these decisions taken online (during the
execution, with the feedback of experience) of offline (before execution starts)?

• Do we consider a continuous time? The case of single criteria, continuous time, de-
terministic decision problem is the field of continuous Optimal Control. On the other
hand, modeling the system’s dynamics with a discrete representation of time, with a
system evolving by “steps” has been studied as Discrete Events Dynamic Systems.

Agents?

Considering decisions for an autonomous fire surveillance aircraft and for a team of these
aircrafts are two problems which involve very different decisions. A first distinction needs to
be made between the question of decision in a single-agent setup or in the larger framework
of multi-agent systems. Then, even with several agents, one often distinguishes various fields
such as:

• Game Theory, defining criteria for equilibrium of decisions, considering separately the
questions of cooperative or adversarial games,

6

1.2. Planning and Learning to act

• Multi-agent cooperation or coordination systems,

• Meta-heuristic evolutionary methods considering large quantities of simple agents and
studying the emergence of a global intelligent behavior (ant colonies, swarm methods,
etc.).

Criteria?

Finally, depending on the nature of the deciding agent itself, formalizing preferences, values,
or desires implies defining a criterion. Criteria can be related to the problem of Satisfaction,
where one tries to find any decision which verifies the criterion, or to the problem of Opti-
mization which ranks all solutions and searches for an optimal decision. This last category
naturally leaves place for compromise by defining the possibility of finding a sub-optimal
solution which is close to the optimal one and good enough for the agent. On top of these
distinctions, problems do not necessarily have a single criterion, for example multi-criteria
Optimization or Satisfaction try to find solutions relevant with respect to a given vector of
criteria.

1.1.2 From Decision Theory to Discrete-Time Stochastic Optimal Control

Let us try to summarize the different features mentioned in the previous paragraphs in order
to outline the topic of interest of these pages. We will deal with:

• Problems of sequential decision making,

• involving a single agent, which interacts with

• a Discrete Events Dynamic Systems decision context,

• described in a probabilistic framework,

• with a model of the problem given either as an explicit predictive model or as a simu-
lator,

• and involving a single optimization criterion based on the interaction with the envi-
ronment.

This problem is linked to the field of Discrete-time, Stochastic Optimal Control, more
specifically to the domains of Planning under Uncertainty and Reinforcement Learning which
we present more in detail in the next section.

1.2 Planning and Learning to act

Sequential decision models are mathematical abstractions of situations in which decisions
must be made in several stages, while incurring a certain cost or receiving a certain reward
at each stage. These costs or rewards correspond to the evaluation of each step’s outcome:
it is either a reinforcement signal provided by the environment or an immediate gain or loss
evaluation. Each decision may influence the circumstances under which future decisions will
be made so that the agent must balance the cost of the current decision against the expected
cost of future situations.

7

Chapter 1. Taking good decisions: from examples to Temporal Markov Decision Problems

This problem of sequential decision making under probabilistic uncertainty has been
addressed from different points of view, with a common modeling basis. Since we try to use
as little bibliographical citations as possible in this chapter, we simply refer the reader to
the excellent textbooks of:

• [Bertsekas and Shreve, 1996] for the Discrete-Time Stochastic Optimal Control ap-
proach,

• [Puterman, 1994] for the Probabilistic Planning under Uncertainty point of view,

• and [Sutton and Barto, 1998] for an introduction to Reinforcement Learning.

The three disciplines mentioned above address similar problematics from different points
of view. Discrete-Time Stochastic Optimal Control considers a “system control” approach:
the decision context is viewed as a system for which we search for a (generally closed-loop)
controller in order to bring the system to a certain state via a desired behavior specified by
the criterion. This approach is closely related to the vocabulary of Control Theory. The
problem solved deals with the question of determining the best controller — with respect to
a given criterion — used to interact with a stochastic environment. Probabilistic Planning
under Uncertainty is centered on the search for a sequence of decision rules and adopts the
point of view of exploiting domain knowledge to build such a sequence, in an agent-centered
formalism. Finally, Reinforcement Learning addresses the question of dynamically finding
this sequence through the interaction between an agent and its environment. In all three
approaches, a common modeling basis is used: Markov Decision Processes (MDPs). The
underlying assumption of these fields is that the system to control / the agent’s decision
variables / the agent’s environment can be described as an MDP2. This chapter tries to
remain at the level of ideas so we will wait for the next chapter to introduce the formal MDP
model in detail.

Agent

Environment

action observation

Figure 1.1: Sequential Decision framework

Sequential decisions in Optimal Control can be illustrated by the situation where a de-
ciding agent acts upon its environment through the successive actions it performs (as shown
on figure 1.1). In the discrete events framework, the environment evolves by discrete steps,
generating a sequence of observations for the agent. These observations carry information
about the state variables’ evolution or the rewards and costs of the current strategy. Planning
focuses on determining the best way to act given a model of the environment and an opti-
mality criterion, while Reinforcement Learning takes the approach of dynamically improving
the agent’s behavior by reasoning about the experience of interacting with the environment.

2This model might not be known in advance to the decision-maker, especially in the case of Reinforcement
Learning.

8

1.2. Planning and Learning to act

1.2.1 The problem of Planning

The general question of Planning consists in reasoning about actions’ expected outcomes so
as to organize them in order to fulfill some predefined objective. It is a deliberative process,
requiring prior knowledge about the deciding agent’s environment, which aims at finding
good or optimal plans of action. [Ghallab et al., 2004] defines Automated Planning as the
area of Artificial Intelligence that studies this deliberation process computationally.

Because there are various types of actions, contexts and goals, there also exist the corre-
sponding forms of planning. These forms of planning can be seen from the applicative point
of view. To cite a few examples:

• Path and motion planning imply geometric operators for organizing movements of
agents.

• Economy planning: portfolio management, investment schedules.

• Urban planning: public transportation, waste management.

• Logistics: supply chains management, workflow control.

• Planning for space operations: maintenance of satellite constellations, action strategy
of a Mars rover.

• Robotics planning: often combines results from motion planning with high-level mis-
sion operators. Applications include nuclear site intervention rovers, autonomous Un-
manned Air Vehicle mission planning.

• Project planning: organizing the succession of projects steps given the constraints.

• Etc.

Modeling this large variety of planning problems implies defining models which present
appropriate features. These features extend the ones presented in the previous section:

• Continuous vs. discrete (or boolean or hybrid) variables

• Hierarchical description of operators vs. atomic representations

• Deterministic vs. uncertain (probabilistic, possibilistic, contingent) models

On top of these domain features, tools have been developed for representing and solving
planning problems, thus defining the corresponding planning disciplines. To cite a few:

• Planning-graph techniques

• Hierarchical Task Network planning

• Plan-space planning

• Constraint-based approaches

• Temporal planning

• Planning in Markov Decision Processes

9

Chapter 1. Taking good decisions: from examples to Temporal Markov Decision Problems

• Etc.

The output of a planning algorithm is a plan of actions. This plan can be formulated in
various forms. Classical planning algorithms generally calculate a fully ordered sequence of
actions to perform. However, some representation structures can be richer than this straight-
forward sequence of actions. For instance, Partial Order Planners output a partially ordered
set of actions or sequences of partially ordered sets of actions. Contingent Planning define
conditional plans which specify alternative strategies depending on the execution outcomes.
Finally, universal plans or policies are functions mapping execution history to actions, which
are often the result of non-deterministic planning algorithms.

“Plans” are the Planning term for “controllers” in Control Theory3. A sequential plan
is an open-loop controller, while a universal plan is a closed-loop controller, applied to the
discrete events system describing the world. Open-loop control works fine when all of the
following are true:

1. The model used to design the controller is a completely accurate model of the physical
system.

2. The physical system’s initial state can be exactly determined.

3. The physical system is deterministic.

4. There are no unmodelled disturbances.

In other words, open-loop control works fine when execution corresponds exactly to what
the model predicted. These conditions hold for some of the problems studied in Artificial
Intelligence, but they are not true for most realistic control problems. Classical planning
turns towards architecture solutions, such as plan repair or re-planning, for coping with real
world contingencies4. In the case of probabilistic systems, one often prefers to build closed-
loop control policies.

Hence, the problem of Probabilistic Planning under Uncertainty is defined by the inference
of efficient control policies, given a stochastic model of the system to control and an optimality
criterion.

1.2.2 Deciding from experience: Reinforcement Learning

Reinforcement Learning searches for the exact same closed-loop policy, but adopts a learn-
ing point of view. [Sutton and Barto, 1998] introduces Reinforcement Learning as “learning
what to do — how to map situations to actions — so as to maximize a numerical reward
signal”. The approach is to learn what actions provide the best reward by trying them and
reinforcing the control policy. Rewards might not be immediately available after a single
action, but rather accessible through a sequence of optimal actions. Hence, the two most
important characteristics of Reinforcement Learning problems are the features of “trial-and-
error” and “delayed rewards”. One can notice that the core problem remains the same as
the one of Optimal Control, but the point of view is completely different.

3See [Barto et al., 1995] for an comparison between Dynamic Programming, Heuristic Search and Optimal
Control.

4Control Theory also defines the area of robust control which studies robustness of controllers when the
model parameters vary.

10

1.3. Time, uncertainty and sequential decision problems

It is interesting to relate Reinforcement Learning to the two main trends of Machine
Learning : Supervised and Unsupervised Learning. Supervised Learning is learning from
examples input by an external supervisor, either a teacher or a set of predefined data. Rein-
forcement Learning does not fit in Supervised Learning since it focuses on learning through
the interaction with the system and thus does not receive samples from a teacher but from
its own behavior and experience. This important distinction raises the core question of Rein-
forcement Learning methods known as the exploration vs. exploitation trade-off. To obtain
a maximum reward, the agent should apply its best policy found so far and thus exploit its
acquired knowledge. However, to discover new and better actions and situations, it has to
try actions it has not tried before, thus taking the risk of earning less than what its current
policy yields, by exploring. This exploration vs. exploitation balancing dilemma is even more
problematic in the case of stochastic systems where actions need to be tried several times in
the same situation to obtain a reasonable estimation of their value.

The type of problems we will address in this thesis deals with the question of building
closed-loop policies for time-dependent, stochastic systems, involving uncertainty. We will
consider different cases where some information is available to model the system under dif-
ferent forms: complete predictive model or generative model5. The general mathematical
framework in which we will work is based on Markov Decision Processes (MDP). We will
introduce the formal MDP model at the beginning of the next chapter.

1.3 Time, uncertainty and sequential decision problems

Temporal Planning is a specific branch of Classical Planning which involves dealing with du-
rative actions and events, and focuses on the temporal extensions of planning. In Planning
under uncertainty and more specifically in the commonly-used MDP framework, most vari-
ables are considered discrete and the sequential decision problem is supposed to take place
in an stationary environment for which decisions are taken at fixed, predefined instants in
time called decision epochs.

Many real world problems that involve decision under uncertainty do not satisfy the
hypotheses of stationarity, fixed transition duration and fixed-time decision epochs. In order
to introduce the family of time-dependent problems which we call Temporal Markov Decision
Problems, we present here several different examples exhibiting the specific features and
structure of such problems.

1.3.1 Examples

Biagent coordination

In order to cross a burning forest and to reach a specific location, a ground rover needs to
plan its path and its mission. The actions the rover can perform are movements on the
forest roads which can be blocked because of the fire propagation. The rover’s world model
is described as a navigation graph where edges are roads and vertices are crossings. Each
movement’s outcome is uncertain in terms of resulting state and duration because the fire
and the burned terrain can lead the movement to fail.

The rover is not alone: it is teaming with a helicopter UAV (Unmanned Aerial Vehicle).
The UAV can watch the forest from above but cannot go too close to zones that are still

5simulator

11

Chapter 1. Taking good decisions: from examples to Temporal Markov Decision Problems

Figure 1.2: Fire fighting coordination

burning. The only goal of the UAV is to assist the rover’s navigation. For this purpose, these
two heterogeneous agents can communicate a limited amount of information. Since agents
are heterogeneous, might receive different mission goals and need to be fully autonomous,
mission planning is an individual process and necessitates some decentralized coordination
as illustrated on figure 1.3.

We suppose that the communication channel between agents is used to declare intentions
or exchange map information with a predefined common vocabulary. Each agent’s planning
procedure needs to take into account the consequences of the other agent’s declared inten-
tions. In other words, on top of the continuous time dynamics of the fire’s evolution, each
agent’s plan affects the other’s model of the world at real-valued dates. Therefore, the plan-
ning algorithm needs to cope with an observable continuous time which is a crucial variable
for planning.

More specifically, when the rover declares a first navigation plan, its message modifies
the UAV’s reward model by adding time-dependent rewards along the rover’s path because
there is a higher gain in checking this portion of the road rather than another one.

Even though the planning process needs to take into account a continuous time variable,
it remains a discrete event planning process: each action remains a discrete event which
conditions the next step of the global process’ evolution.

The subway problem

Imagine now a virtual subway network where passengers arrive at the stations to take the
train following a well established distribution probability. Their destination is also known via
a distribution over train stations. These distributions vary with the time of day: modeling
rush hours, people going to work, leaving for lunch, etc. The problem of the subway manager
is to optimize the running cost of the network over a full day by deciding when to add or
remove trains from the network. Fewer trains means less exploitation cost but also imply

12

1.3. Time, uncertainty and sequential decision problems

The rover’s declared
most probable trajectory

is .

The fire should
change according to

t

⇒ My action policy is:

t

in s1: a3 a7 a1

in s2: a2 a6 a1

in s3: a3 a2

a3

Consequence events
of the UAV’s declared
most probable actions:

ev5 ev1 ev6
t

Probability of
successfully taking road 3

t

Current state

x1 = 3 x3 = 1 x5 = 0
x2 = 3 x4 = 2 x6 = 8

⇒ My action policy is:

tin s1: a3 a7 a1

in s2: a2 a6 a1

in s3: a3 a2

a3

communication channel

Figure 1.3: Illustrating the origins of time dependency in the coordination problem

13

Chapter 1. Taking good decisions: from examples to Temporal Markov Decision Problems

less profit during the periods where they can be fully used.

(a) The subway network in Toulouse (b) Airport taxiing

(c) INRA to ONERA (d) Mars rover

Figure 1.4: Examples

Each of the manager’s actions have an immediate deterministic effect but the long term
consequences are stochastic, hard to predict and model because of the influence of all the
concurrent stochastic events occurring in parallel (such as passengers arrivals at different
stations or trains movements).

Therefore, the difficulty of this problem is twofold: on top of the large number of state
variables (dimensions) which yields a large and hybrid state space, concurrency makes it
is complex to write explicit transition probabilities for the overall stochastic process of the
state variables. Thus, the problem itself is hard to model as a single synthetic stochastic
process6.

Airport taxiing

Today’s airports are getting more and more crowded and planning the ground movement
of planes is a problem which combines the critical aspects of traffic optimization and large
stochastic influences from the weather, the landing conditions, airport alerts or technical
failures.

6The reader familiar with queueing systems will find an analogy with the problem of writing the output
times process’ probability density function for an M/G/n queue.

14

1.3. Time, uncertainty and sequential decision problems

When a plane lands, it can leave the runway at different points. Then it needs to
go through the road network which leads to the gates and terminals. Later, it needs to go
through maintenance and finally picks its new crew and passengers up and leaves the airport.

Given the plane arrival and departure schedule for the day and some knowledge about
the uncertainty of the problem (weather model, delay risk, etc.), we wish to compute an
efficient routing strategy for the planes from the runway to the terminals and back in order
to optimise the departing times.

INRA-ONERA path finding

This problem is a simplified version of the fire fighting problem. The goal here is to go
as fast as possible from ONERA to INRA for a meeting, choosing at each step between
taking the bus, the car or walking. Traffic, bus schedules, incident probabilities, etc. depend
continuously on the time of day and so does the optimal strategy.

Mars rover

This problem is a modified version of the standard Mars rover problem in temporal planning.
The agent is a ground rover which has a mission of collecting rocks and pictures from the
surface of Mars. It needs to plan its mission according to the time of day (the ability to
recharge), its battery and free memory level, its position and the already accomplished goals.

Depending on the time of day, the lighting changes; this affects the probability of taking
a successful photo and modifies the solar panels recharge capacity.

1.3.2 Characterizing temporal problems

The examples presented in the previous section come from different areas of application but
have some features in common. Their dynamics and the complexity of representing their
evolution are strongly dependent on the time variable. Moreover, having an observable time
variable among the state variables forbids loops (other than instantaneous): one cannot go
back in time so the only possible loop is an instantaneous action which takes the process
back to the same state at the same instant. Consequently, these problems present a specific
loop-less structure conditioned by time.

This structure could be induced by any other non-replenishable resource. We will con-
centrate on time in order to build our algorithms and to work on the same family of problems
— keeping in mind that this work could extend to more general setups.

Definition (Temporal Markov Decision Problems). We define Temporal Markov Decision
Problems as decision under uncertainty problems presenting the following five main features:

• Discrete event decision problems: the system’s evolution is described as a discrete
event dynamic system. These systems have been well studied and generalized in the
DEVS framework [Zeigler et al., 2000]. We will show in chapter 11 that all our mod-
els fall into this framework and we will develop the direct mapping between our most
complex model and DEVS models.

• Uncertainty on the actions’ results: as for stochastic decision processes, actions’
results are uncertain and described via probability distributions over the post-action
states.

15

Chapter 1. Taking good decisions: from examples to Temporal Markov Decision Problems

• Uncertainty on transition’s durations: contrarily to the standard MDP framework
where all transitions have unit duration, we allow transitions to have stochastic, real-
valued durations. The next chapter will illustrate previous models from the literature
that share this feature and will highlight the differences and compatibilities with temporal
Markov decision problems.

• Explicit time dependency: on top of having random continuous durations, time is
made explicit and observable in temporal Markov decision problems. In other words,
time is a state variable affected by both the uncertainty concerning the next state and
the stochastic transition durations. The structure induced by including an explicit time
variable in the state space will be developed in chapters 4 to 9, along with numerical
methods designed to exploit this aspect. Moreover, time plays a specific role since it
appears as the exponent of γ in the discounted optimization criterion. This last point
will motivate the theoretical developments of chapter 8 which prove that the optimality
equation can be preserved with an observable time.

• Complexity from concurrency: even though this aspect is hardly quantifiable, it
illustrates the fact that, for some of the problems presented above (eg. the subway,
airport or coordination problems), determining a set of state variables for which the
process verifies Markov’s property can be difficult. Moreover, writing the transition
function over this joint state space requires a lot of engineering while the separate
concurrent processes that yield the complexity of the overall one are themselves quite
simple. This remark motivates the investigation of Generalized Semi-Markov Decision
Processes with continuous observable time in chapters 11 and 13.

In order to lift the ambiguity with Boyan and Littman’s TMDP model, we call these
problems “temporal” and not “time-dependent”. The formal TMDP model is presented in
the next chapter and studied in part I as a specific way of modeling temporal Markov deci-
sion problems. This distinction in vocabulary is also done to account for the genericity and
additional complexity coming from all the previous features.

The next chapter focuses on presenting different approaches to dealing with time and
modeling time-dependency for decision problems. These approaches come from the stochastic
processes or from the MDP literature. We will try to go from simple standard Markov
(Decision) Process and will progressively introduce explicit time dependency and temporal
complexity.

16

2
Temporal Markov Decision Problems — Modeling

Planning is a branch of decision theory dealing with the selection and ordering of
high-level actions which lead to a certain goal or behavior. This chapter introduces
the basic notions and formalisms which will be used throughout the thesis. We
start with the general framework of Markov Decision Processes (MDPs) in order to
model uncertainty in action’s results. Then we will highlight where the difficulties
arise when one wishes to deal with observable time in MDPs. This discussion will
lead to the progressive introduction of specific models from the literature in order
to model continuous time dependency in planning under uncertainty.

2.1 Markov Decision Processes

The work presented in this thesis deals with the framework of Markov Decision Processes
(MDPs) [Bellman, 1954; Puterman, 1994; Bertsekas, 1995]. MDPs have become a popular
framework for representing decision problems where actions’ resulting states are uncertain.
In an MDP, each action’s outcome is described through a probability distribution on the
next state of the process, conditioned on the current state. This provides a straightforward
way of presenting the uncertain effects of every single action on the problem. We use this
section to provide a brief review on MDP basics and standard algorithms to solve them.

2.1.1 Formalism

Definition (Markov Decision Process). An MDP is a discrete time stochastic decision pro-
cess described by a 4-tuple 〈S,A, P, r〉, where:

S is the state space of the problem. States hold all the relevant information to describe
the configuration, position, internal variables, etc. available to the decision-maker.
S is usually a discrete countable — often finite — set of states. Extensions exist to
continuous compact spaces or Borel subsets of complete, separable metric spaces for the
state space.

A is the set of actions available to the problem. Each action a has a specific stochastic
influence on the problem and triggers a transition to a new state. As for S, A is usually
countable and often finite, but the same extensions exist to continuous cases.

P is the transition function of the problem. It describes the probability that action a
takes the process from state s to state s′. In other words: P (s, a, s′) = Pr(s′|s, a). An

17

Chapter 2. Temporal Markov Decision Problems — Modeling

important property of MDPs is that this transition function verifies Markov’s property,
i.e. the probability of reaching state s′ when one undertakes action a in state s only
depends on a and s and not on the whole history of previous transitions. This property
highlights the fact that one state holds all the information which is necessary to the
agent in order to predict the current transition’s outcome.

r is the reward function of the process. Whenever an action is performed and a transi-
tion is triggered, the agent receives a reward R(s, a, s′). Sometimes this reward func-
tion will be given as the mathematical expectation of the one-step reward: r(s, a) =∑
s′∈S

P (s, a, s′)R(s, a, s′). The goal of the decision maker will be to optimize a given

criterion based on the transition and reward model of the process.

One often writes P (s′|s, a) = P (s, a, s′). The equations from the previous definition are
recalled below.

P :
{
S ×A× S → [0; 1]

(s, a, s′) 7→ Pr(s′|s, a)
(2.1)

∀(s, a) ∈ S ×A, ∑
s′∈S

P (s, a, s′) = 1 (2.2)

R :
{
S ×A× S → R

(s, a, s′) 7→ R(s, a, s′) (2.3)

r :

{
S ×A → R
(s, a) 7→ ∑

s′∈S
P (s, a, s′)R(s, a, s′) (2.4)

The successive discrete times at which the agent is asked for a decision are called decision
epochs and correspond to the process’ steps. Figure 2.1 and 2.2 illustrate the dynamics of
MDP models (for notation conventions, please refer to page xi).

s1

s3

s2

a1, P (s2|a1, s1),
R(s1, a1, s2)

a1, P (s3|a1, s1),
R(s1, a1, s3)

a1, P (s1|a1, s1),
R(s1, a1, s1)

Figure 2.1: MDP transition

2.1.2 Policies, criteria and value functions

Solving an MDP problem usually consists in finding a control policy which optimizes a given
criterion. A stationary Markov control policy π is defined as a mapping from states to
actions specifying which action is the best to undertake in every state of the process.

π :
{
S → A
s 7→ a

(2.5)

In the general case, policies are defined as sequences {ρ0, ρ1, . . .} of decision rules. Each
decision rule is a mapping from previous history to actions. There is one decision rule per

18

2.1. Markov Decision Processes

t0 1 n n + 1

s0

}
p(s1|s0, a0)
r(s0, a0)}

p(s1|s0, a2)
r(s0, a2)

sn p(sn+1|sn, an)
r(sn, an)

Figure 2.2: Transition and reward functions

decision epoch (thus yielding an infinite countable set of decision rules for infinite horizon
problems). [Puterman, 1994] shows that for infinite horizon problems and for most common
criteria, there always exists a policy which is:

• stationary: all decision rules are the same throughout the decision epochs,

• Markovian: the optimal action only depends on the current state,

• optimal: at least as good as any history-dependent policy.

This allows us to search for optimal policies in the restricted set of stationary Markov
policies. To be as generic as possible, we should also mention the case of stochastic policies.
A stochastic decision rule is a mapping from states to probability distributions over actions.
A stochastic policy is a sequence of stochastic decision rules. [Puterman, 1994] shows that
the previous results hold for deterministic and stochastic policies, namely, there exists a sta-
tionary, deterministic, Markovian, optimal policy. We won’t consider the case of stochastic
policies and will write D the set of deterministic stationary Markov policies.

Once we provide a criterion which evaluates the performance of a policy π from any
initial state s, we can define the value function associated with the policy:

V π :
{
S → R
s 7→ V π(s)

(2.6)

This value function evaluates how well the policy performs with respect to the given
criterion. We will write V the set of value functions. A policy π is said to be optimal if:

∀s ∈ S, ∀π′ ∈ D, V π(s) ≥ V π′(s) (2.7)

Defining the criterion to optimize corresponds to defining how one evaluates the policy’s
quality. For instance, if we know the number T of decision epochs in advance, we might
want to use the finite horizon criterion which is the cumulative sum of the rewards obtained
when applying the policy from the current state until the horizon:

V (s) = E

[
T∑
δ=0

rδ|s0 = s

]
(2.8)

However, the optimal policy is no longer stationary for the finite horizon criterion. In
many cases, the number of decision epochs is very large or unknown and while we are far
from the horizon, the policy tends to be stationary. This is why we will only consider infi-
nite horizon criteria. [Bertsekas and Tsitsiklis, 1996] introduces an elegant classification of
infinite horizon problems as either stochastic shortest path, discounted, or average cost per

19

Chapter 2. Temporal Markov Decision Problems — Modeling

stage problems, which correspond respectively to the three following criteria.

If we know that our execution will necessarily end before an infinite number of steps (for
example because there is a probability one of ending up trapped in a cost-free terminal state
from any initial state), then we might want to use a total reward criterion which allows for
unbounded horizon reasoning:

V (s) = E

[∞∑
δ=0

rδ|s0 = s

]
(2.9)

The total reward criterion can be seen as defining a stochastic shortest path problem in
terms of rewards. In the general case though, the total reward criterion is not guaranteed to
be finite. This is why the most commonly used criterion is the discounted criterion:

V (s) = E

[∞∑
δ=0

γδrδ|s0 = s

]
, γ ∈ [0, 1) (2.10)

The discounted criterion penalizes rewards obtained late in the future and insures con-
vergence of the sum if the MDP’s reward model is bounded. Depending on the context, the
γ factor can be interpreted as a “no critical failure before the next step” probability (mission
planning), an inflation loss 1 (economy) or a penalty discount.

One last criterion is sometimes used as an alternative to the discounted criterion: it is
sometimes more important to have a good average behaviour over the execution rather than
to optimize the (discounted) sum of rewards. For this purpose, we can define the average
criterion:

V (s) = E

[
lim
T→∞

1
T

T∑
δ=0

rδ|s0 = s

]
(2.11)

All these criteria (and other ones) allow the definition of the value function associated
to each policy (equation 2.6). In this work, we will focus on infinite horizon MDPs with
discounted or total reward criteria.

2.1.3 Policy evaluation and optimality equation

We will note V ∗ the optimal value function. More specifically, V ∗ is defined as:

∀s ∈ S, V ∗(s) = max
π∈D

V π(s) (2.12)

V ∗(s) corresponds to the best gain one can expect with regard to a given criterion when
the policy’s execution starts in state s. Similarly, any policy with value function V π = V ∗

will be called optimal according to equation 2.7 and noted π∗. The following results hold for
the discounted criterion and can apply to the total reward criterion in some specific cases
(namely, when the limit in the criterion is guaranteed to exist).

One can define the policy evaluation operator Lπ as:

Lπ :

V → V

V 7→
{
S → R
s 7→ r(s, π(s)) + γ

∑
s′∈S

P (s′|s, π(s))V (s′)
(2.13)

1Actually, if we write k the inflation rate, we have γ = 1
1+k

20

2.1. Markov Decision Processes

In other words:

∀V ∈ V, ∀s ∈ S, LπV (s) = r(s, π(s)) + γ
∑
s′∈S

P (s′|s, π(s))V (s′) (2.14)

Lπ is a contraction mapping with respect to the supremum norm in the set of functions
from S to R and V π is the unique solution to the equation V = LπV . This provides an
implicit characterization of a policy’s value function. Similarly, we can define Bellman’s
dynamic programming operator L for MDPs as:

L :

V → V

V 7→

S → R

s 7→ max
a∈A

{
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)
} (2.15)

∀V ∈ V, ∀s ∈ S, LV (s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

}
(2.16)

This operator is also a contraction mapping on the Banach space of value functions (with
the supremum norm) and one can prove (eg. in [Bellman, 1957; Puterman, 1994]) that V ∗

is the only solution to the equation V = LV :

V ∗(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

}
(2.17)

Since V ∗ is the optimal policy’s value function, we can build π∗ as the greedy policy with
respect to V ∗ and hence derive an optimal policy from equation 2.17:

π∗(s) = arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

}
(2.18)

2.1.4 Q-values

An equivalent formulation of the above properties is in terms of Q-functions or Q-values.
One can define the Q-value Qπ(s, a) of performing action a in state s, given policy π, as
the expected value of applying a at the first decision step and then using policy π until the
horizon. For the discounted criterion, one has:

Qπ(s, a) = E

[∞∑
δ=0

γδrδ|s0 = s, a0 = a

]
, γ ∈ [0, 1) (2.19)

The relationship between V π and Qπ is given in equation 2.20.

V π(s) = Qπ(s, π(s))
Qπ(s, a) = r(s, a) + γ

∑
P (s′|s, a)V π(s′) (2.20)

The optimal Q-value Q∗(s, a) of action a in state s is the maximum expected cumulative
reward which can be obtained over all execution paths starting with applying a in s.

The policy evaluation operator Lπ and Bellman operator L also apply on Q-values and
yield the policy evaluation equation 2.21 and the optimality equation 2.22, similar to equation
2.17.

21

Chapter 2. Temporal Markov Decision Problems — Modeling

Qπ(s, a) = r(s, a) + γ
∑

P (s′|s, a)Qπ(s′, π(s′)) (2.21)

Q∗(s, a) = r(s, a) + γ
∑

P (s′|s, a) max
a′∈A

Q∗(s′, a′) (2.22)

2.1.5 Optimizing policies

Based on equations 2.17 and 2.18 we can derive standard optimization methods for MDPs.
We will briefly present here the Value Iteration, Policy Iteration and Linear Programming
algorithms for MDPs. In the next chapters, we will provide more details as we concentrate
on more specific features of these methods.

Value Iteration

The Value Iteration algorithm is directly inspired by the fact that L is a contraction map-
ping over V: any sequence of value functions (Vn)n∈N recursively defined by equation 2.23
converges to V ∗.

Vn+1 = LVn (2.23)

Calculating equation 2.23 (or the equivalent equation for a policy) is called a Bellman
backup. This allows us to define the Value Iteration algorithm:

Algorithm 2.1: Value Iteration
V0 ← 0
n← 0
repeat

for s ∈ S do

Vn+1(s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a) · Vn(s′)
)

n← n+ 1
until ‖Vn − Vn−1‖ ≤ ε
for s ∈ S do

π(s)← argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a) · Vn(s′)
)

return Vn,π

One can see Value Iteration as the incremental propagation of the rewards to all states in
the problem. Each iteration of Value Iteration has complexity in O(|A||S|2) and the optimal
policy is reached in O

(|S||A|
(1−γ) log(1/(1−γ))

)
iterations ([Littman et al., 1995]). The algorithm

is usually stopped when ‖Vn − Vn−1‖ ≤ ε. Then one can write that ‖Vn − V ∗‖ ≤ 2γ
1−γ ε. In

case of equivalent ε-optimal actions, the chosen action for π can be any of the set defined by

argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a) · Vn(s′)
)

Policy Iteration

The idea of Policy Iteration is to perform policy search directly in policy space. The goal
here is to incrementally improve an initial policy. For this purpose, we perform one Bellman
backup in every state of the problem with regard to the current policy’s value function. This
way, we are sure to improve the global value function (if possible) and to eventually converge
to V ∗.

22

2.1. Markov Decision Processes

Algorithm 2.2: Policy Iteration
π0 ∈ D
n← 0
repeat

Solve the system of |S| equations:
∀s ∈ S Vn(s) = r(s, πn(s)) + γ

∑
s′∈S P (s′|s, πn(s))Vn(s′)

for s ∈ S do

πn+1(s)← argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

PS(s′|s, a)Vn(s′)
)

n← n+ 1
until πn = πn−1

return Vn,πn

Each iteration of Policy Iteration has complexity in O
(|S|2(|A|+ |S|)) and the algorithm

theoretically converges in the same number of iterations as Value Iteration. Practically, the
number of iterations required before convergence is usually smaller with Policy Iteration than
with Value Iteration. This makes Policy Iteration usually a good choice for MDP resolution
even though the policy evaluation phase requires most of the computation time.

The policy iteration algorithm can be generalized by the Actor-Critic architecture ([Sut-
ton and Barto, 1998]) as presented in figure 2.3. The main idea of such an architecture is
the presence of two separate procedures interacting inside the algorithm:

• The critic performs policy evaluation. It provides an evaluation of the agent’s current
behaviour.

• The actor calculates improvements to the current policy, based on the information
provided by the critic.

Policy Iteration is thus an exact, model-based, Actor-Critic algorithm. Variants of Policy It-
eration, such as Asynchronous Policy Iteration, Approximate Policy Iteration or Simulation-
Based Policy Iteration [Bertsekas, 1995] all fall under the Actor-Critic framework and differ
in the way the actor and the critic are implemented (model-based vs. model-free, exact vs.
approximate, etc.).

Policy evaluation: Critic

Policy improvement: Actor

π V π

Figure 2.3: Actor-Critic architecture

Linear Programming

The last main family of algorithms for MDP optimization is based on linear programming
and was introduced in [d’Epenoux, 1963]. It leaves the dynamic programming framework
and solves the optimality equation by writing it as a linear program. The idea is to find the

23

Chapter 2. Temporal Markov Decision Problems — Modeling

optimal value function by remarking that if one minimises the quantity
∑
s∈S

V (s) under the

optimality constraint V ≥ LV , then the solution is necessarily equal to V ∗. The associated
linear program is:

min
∑
s∈S

V (s)

V ≥ LV
(2.24)

Which can be written as:

min
∑
s∈S

V (s)

∀s ∈ S, ∀a ∈ A, V (s)− γ ∑
s′∈S

P (s′|s, a)V (s′) ≥ r(s, a)
(2.25)

This approach globally has complexity pseudo-polynomial in |S||A|.

Countering the curse of dimensionality

All standard methods dedicated to solving MDP problems suffer from Bellman’s curse of
dimensionality [Bellman, 1957]. As the number of variables in the problem increases, the
size of the state space increases exponentially, thus making standard algorithms inefficient.
Many techniques have been recently developed in order to tackle this problem of state space
explosion. This document’s purpose is not to list or explore them all, we will however mention
some current trends that have been explored in MDP solving as:

• State space partitioning and exploitation of MDP decomposition as in [Hauskrecht
et al., 1998; Parr, 1998; Dean and Lin, 1995; Sabbadin, 2002],

• State variable factoring as in [Boutilier et al., 2000; Hoey et al., 2000],

• Approximate Linear Programming in [Hauskrecht and Kveton, 2004; Guestrin et al.,
2004; Kveton and Hauskrecht, 2006]

• Focused or heuristic search in [Barto et al., 1995; Bonet and Geffner, 2003b; McMa-
han et al., 2005; Smith and Simmons, 2006; Hansen and Zilberstein, 2001; Dai and
Goldsmith, 2007; Teichteil-Königsbuch and Infantes, 2008],

• Value function approximation in [Lagoudakis and Parr, 2003; Munos and Moore, 2002],

• Etc.

2.2 Time and MDPs

2.2.1 Does time appear in standard MDPs?

The first question that we want to answer is: can we model all the problems of section 1.3.1
as MDPs? And if we can: how can we exploit the structure introduced by the observable
continuous time variable?

In standard MDPs with no explicit time variable, one considers that P and r are station-
ary functions, they do not change from one decision epoch to the other. In this framework,
[Puterman, 1994] showed that optimal infinite horizon policies are stationary too, so the
standard behaviour of MDPs seems to be fully stationary and time-independent.

24

2.2. Time and MDPs

However, time appears in the discounted criterion as the exponent of γ. So, our optimiza-
tion process actually takes a certain notion of future into account. This future is implicitly
modeled by the sequence of decision epochs. More specifically, a reward obtained at time n
is penalized by a factor γn but what this n really is, is the index of the decision epoch, not its
real date. As in standard stochastic processes, we have considered so far that all transitions
had unit duration. What happens if this duration is not set to one anymore?

2.2.2 From MDP to SMDP: introducing uncertain durations

In the stochastic processes framework, Markov Chains are processes that jump from the cur-
rent state to the next with a probability that only depends on the current state. Since there
is no notion of decision, agent or plan in the phenomena described by Markov Chains, they
are abstract representations of the discrete stochastic evolution of a given system. Thus, it
makes sense to merge the concepts of process step and process time for Markov Chains.

Actually, from a temporal point of view, standard discrete-time Markov Chains are con-
sidered to make transitions which have duration one (this way, the process time and the
process steps match). Continuous Time Markov Chains include a continuous time variable,
but their transition durations are governed by (memoryless) exponential distributions, as
presented in [Cox and Miller, 1965].

A Markov chain with arbitrary distributions over transition durations does not retain
the Markov property for the determination of the next step’s date. However, if transition
durations and arrival states are decoupled, most properties of Markov Processes are retained.
This forms the model of semi-Markov Processes (SMPs, [Cox and Miller, 1965])2.

In the rest of this document we will refer indifferently to transition times or to sojourn
times. Indeed, the name of sojourn time is a more rigorous denomination of the notion at
stake. This difference in vocabulary is justified by the discrete events systems paradigm:
the sojourn time in a state s is the time spent in a given state before a transition occurs,
but since we are considering discrete events, the evolution is discrete (the system evolves
stepwise) and each transition takes the system to its new state s′; therefore, this sojourn
time is also the duration of the time period between entering s and entering s′, which is the
transition time between s and s′.

Introducing random transition times in the MDP framework corresponds to defining
semi-Markov decision processes (SMDP, [Puterman, 1994; Howard, 1963]). An SMDP’s
transition function is given as the probability density function Q(τ, s′|s, a) describing the
probability that the next decision epoch occurs before τ time units in the future, in state
s′. The Q transition function is often decoupled as Q(τ, s′|s, a) = P (s′|s, a)F (τ |s, a) which
introduces a very strong hypothesis on the model since it supposes independence between
destination state s′ and transition duration τ . We write f(τ |s, a) the probability density
function associated to F (τ |s, a). Hence:

F (dτ |s, a) = f(τ |s, a)dτ

Figure 2.4 illustrates the duration model of SMDPs. The reward model of an SMDP
is built from the abstraction of a so-called natural process which describes the low-level

2A more formal definition of SMPs can be given in terms of a process W = (X,Y) where X is a Markov
chain and where P (Yn = y) only depends on the values of Xn and Xn−1. Then a process Z choosing its
transition’s destination state based on X and its transition duration based on Y is called a semi-Markov
process. W is a Markov process while Z usually is not.

25

Chapter 2. Temporal Markov Decision Problems — Modeling

MDP:
t0 t1 t2 t3 . . . tδ

∆t = 1

SMDP:
t0 t1 t2 t3 . . . tδ

f(τ |sδ, a)

Figure 2.4: Introducing random transition times: SMDPs

continuous evolution of the system state, namely the states traversed by the process while
an action completes. The natural process’ state and the SMDP’s state agree at decision
epochs. The SMDP’s reward model r is defined as in equation 2.26, where k is a lump sum
reward, c is a reward rate, j are intermediate states of the natural process and p is the
evolution function of the natural process.

r(s, a) = k(s, a) +
∫ ∞

0

∑
j∈S

[∫ u

0
γtc(j, s, a)p(j|t, s, a)dt

]
F (du|s, a) (2.26)

This description of the reward model allows to consider SMDPs as hierarchical abstrac-
tions of macro-actions having stochastic durations. To summarize:

Definition (Semi-Markov Decision Process). An SMDP is given by the 5-tuple 〈S,A, P, F, r〉
where:

• S and A are standard MDP state and action spaces,

• P (s′|s, a) is the state transition model,

• F (τ |s, a) is the cumulative distribution function of the sojourn time variable τ ,

• r(s, a) is the reward model as described above.

Given this model, the policy evaluation equation becomes (withQπ(dτ, s′|s) = Q(dτ, s′|s, π(s)) =
P (s′|s, π(s))f(τ |s, π(s))dτ):

V π(s) = rπ(s) +
∑
s′∈S

∫ ∞
0

γτ · V π(s′) ·Qπ(dτ, s′|s) (2.27)

And if we write mπ(s′|s) =
∫∞
0 γt ·Qπ(dτ, s′|s), then we have:

V ∗(s) = max
a∈A
{r(s, a) +

∑
s′∈S

ma(s′|s)V ∗(s′)} (2.28)

Therefore, optimizing an SMDP policy turns out to be equivalent to solving a total reward
criterion optimality equation. As a matter of fact, introducing variable transition durations
into the model allows to take reward rates into account. This can be useful for modeling
resource consumption or continuous reward acquisition which are common characteristics of
temporal problems.

However, the overall process we consider with SMDPs is still stationary and doesn’t allow
the representation of time-dependency in temporal Markov problems. For this purpose, the

26

2.2. Time and MDPs

model itself must be explicitly time-dependent and time must be included as an observable
state variable. We will therefore focus on models that allow for extension of MDPs to non-
stationary cases.

2.2.3 Some other models taking time partially into account

Other approaches — which do not take simultaneously into account uncertainty on actions
outcomes, on transition durations and time-dependency — define different frameworks for
introducing time in stochastic problems. One could mention shortest path search algorithms
or Stochastic Time Dependent Network (STDN, [Wellman et al., 1995]) which define stochas-
tic transition durations, but deterministic transition outcomes. To our knowledge, the only
model that focuses on time as an independent observable state variable is the Time-dependent
MDP model (TMDP, [Boyan and Littman, 2001]) which is presented in the next subsection.

2.2.4 Making time observable: the TMDP model

The TMDP model decomposes each transition resulting from the application of an action a
into a set of possible outcomes {µ}. Each outcome describes a resulting state and a transition
duration.

Definition (Time-dependent Markov Decision Process). Formally, one can define a TMDP
as:

• S, a discrete state space

• A, a discrete action space

• M , a discrete set of outcomes µ = (s′µ, Tµ, Pµ):

– s′µ is the transition’s resulting state.

– Tµ is a boolean indicating whether the probability density function Pµ concerns
absolute dates or relative durations.

– Pµ(θ) is a probability density function describing the probability that the transition
ends at time t = θ (if Tµ = ABS) or exactly after a duration τ = θ (if Tµ = REL).

• L(µ|s, t, a) is a transition function giving the probability of triggering outcome µ.

• R(µ, t, t′) is the reward model associated with the realization of outcome µ, starting at
t and ending at t′.

• K(s, t) is the reward rate of the “wait” action in state s at time t.

The evolution of a TMDP is illustrated on figure 2.5. In state s1 and at time t, under-
taking action a1 triggers outcome µ1 with probability L(µ1|s1, a1, t) = 0.2 and outcome µ2

with probability L(µ2|s1, a1, t) = 0.8. µ2 describes the transition to s2 and the transition
absolute arrival time is given by Pµ2 , whereas µ1 describes the failure in leaving s1 (loop to
s1) with duration Pµ1 .

Chapters 4 to 6 will describe the TMDP model in more detail and will extend the class
of problems it can represent. For now we only present a short analysis which goes slightly
further than the original [Boyan and Littman, 2001] paper.

27

Chapter 2. Temporal Markov Decision Problems — Modeling

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

Figure 2.5: TMDP - basic elements

It is interesting to remark on figure 2.5 that TMDPs restrict somehow the user’s mod-
eling freedom by forcing the transition duration to depend on the destination state (on the
outcome) while sometimes we might wish to work the other way: specifying the destination
state given the transition’s time-to-trigger.

Similarly, in order to insure the physical meaning and consistency of the model, it is
important to add “watchdogs” to the model initially defined in [Boyan and Littman, 2001].
We need to insure that whenever one triggers µ at t, all absolute arrival times for µ are
posterior to t. More formally, if we write:

Depµ,s,a = {t ∈ R/L(µ|s, t, a) 6= 0}
MABS = {µ ∈M/Tµ = ABS}
Arrµ = {t′ ∈ R/Pµ(t′) 6= 0}

, then a sound TMDP must verify:

∀(µ, s, a) ∈MABS × S ×A, ∀t ∈ Depµ,s,a, ∀t′ ∈ Arrµ, t < t′.

Despite its simplicity and elegance, the TMDP model suffers from some inconsistencies.
It defines a waiting reward rate, but does not explicitly define a “wait” action. Defining an
action means being able to write the L, R and Pµ functions for it; L and R could be written
for a “wait” action, but the Pµ probability density function is unknown. Instead, the model
implicitly inserts waiting times before each action.

TMDP policies are defined as follows: a TMDP policy is a function mapping pairs
(s, t) ∈ S × R of initial states and dates, to pairs (t′, a) ∈ R × A indicating that the op-
timal strategy is to wait until time t′ in order to undertake action a.

It is unclear to see how TMDPs relate to standard MDPs or SMDPs. Part of this
thesis’ work has concentrated on bringing the TMDP framework back into a more standard
stochastic processes and MDP framework. For this purpose we introduced the SMDP+
model which we will present and compare to the TMDP model in chapter 4. More precisely,
we will try to address the following questions:

• What are the mathematical obstacles of including an observable time in SMDPs?

• What is the difference between TMDPs and SMDPs with observable time?

• Is “wait” a standard MDP action ?

• What are really TMDP policies?

• Which is the criterion optimized by TMDP policies?

28

2.2. Time and MDPs

Based on this analysis, we will try to improve TMDP modeling and resolution through
the TMDPpoly framework, algorithm and planner in chapters 5 to 7.

These developments will also bring some more general conclusions about the problem of
introducing a continuous observable time in the MDP framework in chapter 8. There, we
will consider the general problem of observable continuous time in MDPs with parametric
(continuous and discrete) action spaces and hybrid state spaces. We will specifically focus on
establishing mathematical foundations for proving the existence of an optimality equation
which includes both the MDP, TMDP and SMDP+ frameworks; we will call this generalized
framework XMDPs.

2.2.5 Concurrency as the origin of complexity

With the TMDP model, we have introduced continuous observable time in MDPs and are
now able to represent time-dependent stochastic problems of decision under uncertainty.
However, it appears that when it comes to writing the transition and reward models for
real-world examples in TMDP models the task can become incredibly complicated. The first
reason for this difficulty is that the overall stochastic behaviour of temporal Markov decision
problems often results from the concurrent influence of several separate stochastic processes
(as in the subway, airport or coordination problem). On top of that, when one allows for
several actions to be undertaken simultaneously, the possible branching factor in the policy
search explodes. These two aspects come from the fact that we allowed concurrency in two
different ways.

In the CoMDP model ([Mausam and Weld, 2005]), Mausam tackled the problem of au-
thorizing the combination of different actions to be undertaken at the same time. However,
the framework of CoMDP remained in a discrete time setup with fixed time steps. Since
our focus here is on time-dependency and temporal complexity, we won’t enter the CoMDP
model in detail. We will remain in the framework of sequential decision theory and thus will
not consider the combinatorial complexity of allowing concurrent actions to be undertaken
at the same time. However, our final conclusions will show how our results extend to the
case of these concurrent actions.

The complexity of our problems comes from the fact that — in the subway problem for
example — different simple stochastic processes affect the same common state space. Pre-
dicting the next state of the system implies taking into account in the transition function
the probability that the first event to trigger is the arrival of a passenger at station 1, or
the arrival of a passenger at station 2, or a train movement between station 5 and 6, etc.
Additionally to the events’ concurrence — which introduce a first modeling difficulty — the
individual processes are themselves time-dependent, adding to the complexity of the global
process’ behaviour. This simple example gives both an idea of the origin of our problem’s
modeling complexity and a hint as how to go around this difficulty.

Considering concurrent continuous-time stochastic processes is a framework known in
the stochastic processes literature as generalized processes. It doesn’t really make sense to
consider Generalized Markov Process since they would all be synchronous and would result
in a trivial global Markov Process. However, as soon as we allow for real-valued stochastic
transition times, then having several concurrent processes induces a new kind of non-trivial
stochastic processes. The concurrent execution of several semi-Markov processes (SMPs)
affecting the same state space results in a global stochastic process called a Generalized
Semi-Markov Process (GSMP). GSMPs were first introduced in [Glynn, 1989] and have

29

Chapter 2. Temporal Markov Decision Problems — Modeling

been extensively studied in the stochastic processes and discrete event systems literature (as
in [Nielsen, 1998] for example).

Chapter 11 will present GSMPs more in detail and will highlight their general relation
with the global discrete events systems (DEVS, [Zeigler, 1976]) theory. Formally, a GSMP
(Cf. [Glynn, 1989] for further details) is described by a set S of states and a set E of events.
At any time, the process is in a state s and there exists a subset Es of events that are called
active or enabled. These events represent the different concurrent processes that compete for
the next transition. To each active event e, we associate a clock ce representing the duration
before this event triggers a transition as presented on figure 2.6. This duration would be the
sojourn time in state s if event e was the only active event. The event e∗ with the smallest
clock ce∗ (the first to trigger) is the one that takes the process to a new state. The transition
is then described by the transition model of the triggering event: the next state s′ is picked
according to the probability distribution Pe∗(s′|s). In the new state s′, events that are not
in Es′ are disabled (which actually implies setting their clocks to +∞). For the events of
Es′ , clocks are updated the following way:

• If e ∈ Es \ {e∗}, then ce ← ce − ce∗
• If e 6∈ Es or if e = e∗, pick ce according to Fe(τ |s′)

The first active event to trigger then takes the process to a new state where the above oper-
ations are repeated. The framework of GSMPs could be compared with the (deterministic)
framework of Timed Automata ([Alur and Dill, 1994]).

s1

Es1 : e2

e4

e5

e7

s2

Pe4 (s
′|s1)

Es2 : e2

e3

e7

Pe7 (s′|s2)

Figure 2.6: Illustration of a GSMP

One first important remark concerning GSMPs is that the overall process does not re-
tain Markov’s property anymore: knowing the current state s is not sufficient to predict the
distribution on the next state of the process. [Nielsen, 1998] showed that by augmenting the
state space with the events’ clocks, one could retain the Semi-Markov behaviour for a GSMP.

Introducing action choice in a GSMP yields a GSMDP as defined by [Younes and Sim-
mons, 2004]. In a GSMDP, we identify a subset A of controllable events or actions, the
remaining ones are called uncontrollable or exogenous events. Actions can be enabled or
disabled at will and the subset As = A ∩ Es of activable actions is never empty since it
always contains at least the “idle” action a∞ (whose clock is always set to +∞) which, in
fact, does nothing and lets the first exogenous event take the process to a new state. As in
the MDP case, searching for control strategies on GSMDP implies defining rewards r(s, e)
or r(s, e, s′) associated to transitions and introducing policies and criteria.

30

2.3. Similarities and differences with “classical” MDP problems

The GSMDP framework, with and without continuous observable time, will be developed
in chapters 11 and 13. In chapter 13 we will especially focus on designing efficient algorithms
for solving time-dependent GSMDPs.

2.2.6 Models map

Figure 2.7 summarizes the relationship between all the models presented here, from
standard Markov Processes to Generalized Semi-Markov Decision Processes with
continuous observable time.

MP SMP GSMP

MDP SMDP GSMDP

SMDP+,
TMDP,
XMDP
(part II)

GSMDP with
observable time

(part III)

(a)

(a) (b)

(b)

(b)

(c) (c) (c)

(d) (d) (d)

(a) add continuous sojourn time
(b) add concurrency
(c) add action choice
(d) add observable time

Figure 2.7: Models relational map

2.3 Similarities and differences with “classical” MDP problems

The last section presented a short walk-through about MDP models that focused on dealing
with continuous time, either as a temporal extension of actions, as a way of modeling non-
stationarity, or as a source of complexity. The examples presented in section 1.3.1 highlight
the fact that classical problems which are rather well studied in the stationary case raise new
difficulties in time-dependent frameworks.

Dealing with time as a continuous observable variable reaches out of standard frameworks
and calls for specific modeling. Is time a resource? If so, is it bounded? What about the case
of infinite horizon planning? But then, what is the definition of “horizon”? Is it a mission
ending date or a number of actions the agent can perform? If it is not a resource, is time a
state variable? If so, then we should be able to point out the effects of actions upon it (write
transition models).

In the following paragraphs, we try to break this ambiguity on vocabulary concerning
the time variable. This will highlight where standard MDP methods can be reused for time-
dependent problems and where specific structure arises from having a continuous observable
time.

31

Chapter 2. Temporal Markov Decision Problems — Modeling

2.3.1 Three different meanings for a single variable

Techniques for solving continuous-variables MDPs have been developed recently in the plan-
ning community (for example [Feng et al., 2004; Hauskrecht and Kveton, 2004; Mausam
et al., 2005; Li and Littman, 2005]), but all deal with the time variable as a bounded re-
source. In fact, time is a strange variable with regard to our problems since it introduces
an additional coupling between states and rewards by affecting the discount factor in our
criterion, but also remains a state variable (an internal decision variable for the policy), and
lastly time is a non controllable variable, growing as the plan executes.

Actually, separating the different notions of time is important to understand time depen-
dent problems:

• We first consider the time of the underlying Markov chain. We took care of writing
this variable as δ in equations 2.8 to 2.11. This time is discrete, it represents the suc-
cessive decision epochs. At each of these decision epochs, state variables (continuous or
discrete), including time, take different values according to the actions undertaken and
the transition model. As was illustrated in section 2.2, in continuous-time processes,
the time of the Markov chain does not necessarily agree with the physical time of the
process.

• The same section 2.2 introduced the notion of transition time, describing the sojourn
time in a given state before the discrete transition to its successor state. We will write
this sojourn time or sojourn duration with the variable τ since it is a duration, as
opposed to the absolute date of the current decision epoch.

• Then we need to consider the state variable t itself. This variable describes the physical
time of the process — its main clock — and intervenes in the discounted criterion (as
in SMDPs in equations 2.26 and 2.27). Its only dependence on the δ variable is that it
never decreases as δ increases, thus yielding the structure of time-dependent problems.
It is indeed a continuous state variable and therefore needs to be bounded (so that the
state space remains countable). We will see in the next paragraph why this is not a
hard constraint on the problem.

• Finally, we have mentioned the problem of the “wait” action which was not well-defined
in the TMDP (and SMDP+) model(s). This action does not have any meaning if it is
not associated with a waiting duration or waiting date which was well illustrated by the
policy definition of [Boyan and Littman, 2001]. This last time variable is an action’s
parameter, independent from state variables and process’ time. We will explore the
framework of hybrid parametric actions in section 8.

Therefore, the time variable links together some non-controllable aspects (the process’
time) and some controllable features (the system’s state) of the problem. Action’s parameters
and non replenishable resources can play a similar role on the system’s dynamics. Our focus
here is on the time variable, so we will concentrate on this one, keeping in mind that the
results we obtain for the time-dependent framework can be extended to larger setups.

2.3.2 Redefining the notion of horizon

The next question we need to answer concerning the time variable concerns the definition
domain of the global process’ clock: is it necessarily bounded?

When we try to build a model of decision under uncertainty with continuous observable
time, we need to consider the question of the horizon. It is important to make a difference

32

2.3. Similarities and differences with “classical” MDP problems

between the succession of decision epochs — corresponding to the number of undertaken
actions, i.e. the time of the discrete Markov chain during execution — and the “current
time” variable, continuous, observable and non-decreasing. This implies making a difference
between the planning horizon and the temporal horizon.

In standard finite horizon problems the number of actions to undertake is bounded. In
this case, a fine discretization of time might be feasible. But most problems do not allow for
finding an upper bound on the number of steps to reach the goal, and when they do, it is
often too large and the problem is considered as having an infinite horizon.

Thus, our interest goes to modeling our problem with an infinite planning horizon. How-
ever, the knowledge about the problem’s non-stationarity only extends up to a certain date
in the future3. We call this date the pseudo-horizon. Beyond this date, the problem is
considered as stationary (or the horizon states are supposed to be terminal states). In par-
ticular, in the cases of model learning, online planning, or plan repair, the pseudo-horizon
is a moving horizon. This is why we consider infinite planning horizon problems with finite
temporal horizon or finite pseudo-horizon.

Sometimes, when the problem is offline, the moving pseudo-horizon is fixed. Then, we
can consider that planning with respect to a continuous observable time variable corresponds
to planning in an infinite horizon setup with a bounded time resource than cannot be refilled.
In this case, standard methods from the literature for continuous MDP solving can be applied
(if they also apply to the rest of the state space). Few methods really deal with hybrid state
and action spaces, therefore, the work presented on TMDP solving in the thesis’ next part
should be considered from the two different points of view. The first point of view concerns
the problem of solving time-dependent problems. While the second one highlights the fact
that the method developed here is indeed an algorithm for solving MDPs with hybrid state
and action spaces.

2.3.3 Exploiting the structure of time-dependent problems

There is one last thing that needs to be mentioned about time. Even though, as we have
just seen, it often is a bounded state variable, the fact that this variable is non-replenishable
introduces structure in the evolution of the process. Namely, all states with t being strictly
smaller than the current date are non-reachable states. Moreover, in real-life problems,
instantaneous loops always come to an end and the time variable eventually grows and
reaches the pseudo-horizon. This means there is a null probability of observing an infinite
sequence of instantaneous transitions. In other words: executing a plan always reaches the
pseudo-horizon.

3We do not consider periodic problems on purpose here. Namely, we suppose these problems can be dealt
with as finite horizon problems.

33

Chapter 2. Temporal Markov Decision Problems — Modeling

Finally, as we have explored — without entering too much in the modeling details
— the impact of making time continuous and observable in MDPs, it appears that:
• This time is (indeed) a state variable,

• but it shouldn’t be confused with the process’ discrete time (succession of
discrete decision epochs).

• It can usually be bounded, at least as a moving horizon.

• However, it induces a specific quasi-loopless structure.

• Modeling and exploiting this structure in the framework of MDPs seems neces-
sary to build efficient algorithms in order to generate efficient time-dependent
plans or policies.

34

3
Thesis outline

In order to organize the successive ideas leading to our contributions and to facilitate the
reader’s progression across the chapters, this thesis is divided in four main parts.

Part I provided an introduction, both to the general problem of decision and to the ques-
tion of introducing time in MDPs. This general introduction, in chapter 1, led to a review of
models in chapter 2. These models focus on the integration of the time variable in the MDP
framework. They are discussed and compared in order to highlight their specificities and to
introduce the first ideas as to the mechanisms involved in their resolution. These formalisms
provide the modeling basis which is reused and developed throughout the thesis.

When dealing with explicit time-dependent models, one needs to question a strong hy-
pothesis of standard MDPs: is the model stationary anymore? More specifically, how do
we model the exogenous evolution due to the environment, the system’s intrinsic temporal
behaviour, the opponent’s or ally’s actions, etc.? [Boutilier et al., 1999] makes a distinction
between implicit-event models, where the environment’s evolution and effects are factored
into the representation of stochastic actions, and explicit-event models, where change caused
by the environment is modeled separately from change caused by the agent’s actions. Part
II deals with implicit-event temporal models, trying to highlight the structure of the tempo-
ral problem and to build an adapted algorithmic solution to the resolution of the associated
problem. Then, part III illustrates why such implicit-event models are hard to build and how
one can use explicit-event models to learn a policy. Thus, one can summarize the question
addressed by each part as:

Part I General introduction and models
Part II Implicit-event models and continuous observable time
Part III Learning policies in explicit-event temporal models with hybrid state spaces
Part IV General conclusion

In part II, our attention goes to the straightforward idea of introducing an observable,
continuous time variable in an MDP model. In the literature, this approach is known as
the TMDP model. We link TMDPs with SMDPs by introducing observable time in SMDPs
(chapter 4). Then we improve the TMDP framework’s expressiveness by extending the fam-
ily of continuous functions its resolution can handle in chapter 5. We also improve the
resolution scheme itself by introducing the specific TMDPpoly algorithm in chapter 6 and
evaluate this resolution in chapter 7. This work inside the TMDP framework extends to the
more generic framework of time-dependent, implicit-event, hybrid state and action problems

35

Chapter 3. Thesis outline

for which we introduce the XMDP formalism in chapter 8. Chapter 9 introduces unfinished
work presenting an alternative to the previous approaches. We keep this chapter in the
thesis’ corpus for three main reasons: first it provides an interesting algorithmic alternative
in itself, secondly it highlights one of the weaknesses of the previous TMDPpoly approach,
and finally it introduces the first ideas underlying part III. Finally, chapter 10 summarizes
our results on the question of introducing a continuous, observable time variable in implicit-
event, time-dependent MDPs.

Part III begins with a — somehow — admission of failure: for complex domains, implicit-
event models are generally not available. Chapter 11 explores the question of modeling
temporal complexity in stochastic problems. It does so from the generic discrete events sys-
tems point of view and makes a link with the Generalized Semi-Markov Decision Processes
framework, illustrating why constructing an implicit-event model is much harder than as-
sembling the corresponding explicit-event model. Then, chapter 12 takes a brief step out
of the framework of temporal problems to review the approximate and asynchronous Policy
Iteration approaches in order to introduce the general idea of Real-Time Policy Iteration and
to relate it as much as possible to existing approaches. Finally, chapters 13 and 14 apply the
RTPI ideas to the case of temporal domains, using the simulation properties of explicit-event
models introduced in chapter 11 and introducing specific notions related to exploration and
generalization.

Finally, part IV contains a single conclusion chapter which tries to summarize the thesis’
contributions.

Each part begins with a short overview, introducing the problematic at hand, summa-
rizing the questions addressed in each chapter and presenting the organization of developed
ideas. Then we introduce each chapter with a brief abstract of the problem addressed and,
along the document, framed boxes try to highlight the essential results punctuating the
reasoning’s progression.

36

Part II

Planning with Continuous
Observable Time in Markov

Decision Processes

37

Overview

This part presents our contribution to model-based MDP solving when time is made con-
tinuous and observable in the decision-maker’s model. This characteristic allows to consider
non-stationary problems where the transition and reward functions depend explicitly on the
continuous time variable.

Introducing explicit continuous time in MDP modeling raises a certain number of issues.
Among these, we will look specifically at the following questions:

• How do we model the actions affecting the time variable? How should we represent
the temporal consequences of actions within an MDP framework?

• Can we represent idleness in a discrete event model? Is there a difference between
idleness and waiting?

• Which is the most suitable way to represent continuous evolution of the model? In
practice, what kind of methods can we use and what are the appropriate representations
(function classes) for these methods?

• How do we represent a policy? What kind of algorithmic precautions should we take
to infer policies in practice?

• How do we make the link between policies and value functions with respect to this
continuous time?

• How should we exploit this observable time to structure our policy search?

The course of our reasoning goes as follows. We start with the classical model of Semi-
MDPs which includes temporal extensions of transitions and investigate what is needed to
use this model in order to plan with respect to an observable time. This leads us to consider
the questions of:

• Is the SMDP hypothesis of transition probability and transition duration independence
still valid when one wishes to plan with respect to this observable time? How should
the SMDP model be adapted to such representation constraints?

• Can we model idleness in a discrete event model? Is there a difference between idleness
and waiting?

Then our attention turns to the class of problems introduced by [Boyan and Littman, 2001],
known as Time-dependent MDPs (TMDPs). We try to relate the model of SMDPs with
continuous observable time — which we call SMDP+ — with the TMDP model. This helps
us answer the following questions:

• What criterion is really optimized with the dynamic programming equations of [Boyan
and Littman, 2001]?

• Are there implicit assumptions concerning the TMDP model which need to be pointed
out to improve the resolution of TMDP problems? Namely:

• Can TMDPs represent all time dependent problems? Including the ones where the
outcome state depends on the transition duration (and not the opposite)?

39

• What are the assumptions behind the “dawdling” authorized by TMDPs and how do
they affect the optimality equations?

This exploration of the TMDP model will highlight both its advantages and limitations.
Then we focus on the TMDP resolution itself. Boyan and Littman introduced an exact
resolution scheme for TMDPs. We try to find out to what extent it is possible to expand
this exact resolution to a wider class of continuous temporal descriptions. This leads us to
investigate the questions of:

• Given the TMDP optimality equations, can we find a class of functions which would be
stable though value iterations, ie. for which Vn+1 would belong to the same function
space as Vn?

• What would be a reasonable set of hypotheses on the model to insure that the value
function belongs to this function space?

• How would these hypotheses relate to the exact resolution framework of [Boyan and
Littman, 2001]?

Finally, based on the previous analysis, we slightly extend the exact resolution framework
and design an approximate algorithm which provides L∞ bounds on the value function and
exhibits good convergence properties thanks to the adaptation of the Prioritized Sweeping
algorithm to TMDPs. The efficiency of this algorithm also relies a lot on the introduction
of a specific piecewise polynomial framework and dedicated approximation algorithms. This
allows us to answer the practical question:

• Which are the advantages and drawbacks of our TMDPpoly algorithm which is meant
to extend the standard TMDP resolution?

• More specifically: what can we expect from the “formal Bellman backups” on piecewise
polynomial representations?

• And finally: how does this approach scale to temporal planning domains such as the
Mars rover benchmark or the UAV coordination problem?

This exploration of the TMDP framework then leads us to a second thought about the nature
of the wait action and the place of time in our problem. We consider the idea that wait is a
specific continuous parametric action; this leads us to generalize the framework of TMDPs
to a more general model which we call XMDP and which improves on the MDP model in
two ways:

• First it considers a generalization of actions. Instead of considering raw discrete or
continuous actions, it introduces structure by differentiating actions of distinct nature
(wait, walk, . . .) and by associating them with their respective continuous or discrete
parameters. Hence, XMDPs consider parametric actions.

• Secondly, it provides an extension of the standard Bellman equation to the case of dis-
counted MDPs with observable time, hence proving the soundness of a formal extension
of TMDPs to hybrid state spaces, hybrid parametric action spaces and discounted cri-
teria.

This XMDP framework thus provides a general model for implicit-event Temporal Markov
Decision Problems.

This course of reasoning and the associated mathematical, modeling and algorithmic
issues are linearly addressed throughout the following chapters.

40

• Chapter 4 establishes the link between the well-explored framework of Semi-Markov
Decision Processes and TMDPs. Its goal is to point out two different features: on
the one hand, we consider TMDPs under the light of temporal extensions of MDPs,
showing which hypotheses are implicitly made to transform SMDPs with observable
time into TMDPs. On the other hand, we try to highlight why and how is a TMDP
different from a hybrid variable MDP.

• Chapter 5 focuses on the dynamic programming equations introduced in [Boyan and
Littman, 2001]. It presents our attempt at finding a class of functions which is sta-
ble by the Bellman operator for TMDPs. More specifically, our contribution extends
slightly the results for exact resolution presented by Boyan and Littman, highlights
the difficulties and interests of using piecewise polynomial functions for TMDP solving
and opens the door to the approximate resolution scheme presented in the following
chapter.

• Then, in chapter 6 we present our TMDPpoly algorithm designed to efficiently solve
generalized TMDPs. It relies on the properties of exact and approximate operations
on piecewise polynomial functions, makes use of convergence bounds for Approximate
Value Iteration and implements an adapted version of Prioritized Sweeping for gener-
alized TMDPs.

• Chapter 7 presents the experimental results of the TMDPpoly planner implemented from
the TMDPpoly algorithm. Its performance and outputs are experimentally evaluated
on different temporal Markov problems.

• In chapter 8 we bring mathematical foundations to an extension of TMDPs. We
generalize the concept of idleness defined in TMDPs to the case of hybrid (continuous
and discrete) actions. We define the XMDP framework on the basis of MDPs with
observable time and hybrid states and actions. Then we introduce an extended Bellman
equation for XMDPs and provide a sound set of hypotheses in order to extend the
classical Bellman operator’s properties. XMDPs include standard MDPs and TMDPs
and provide a more general mathematical foundation to the problem of modeling and
solving MDPs with observable time.

• Chapter 9 presents a possible perspective of the previous work. It introduces the idea
of incrementally finding the policy’s temporal bounds via the resolution of a sequence
of discrete problems. Somehow in-between Value Iteration and Policy Iteration, the
proposed method gives the first hints as to the model-free algorithms which will be
presented in the next part of the thesis.

• Finally, chapter 10 summarizes the results and contributions seen throughout the pre-
vious chapters, highlights their strengths and weaknesses, and presents how they can
contribute to more general MDP optimization methods.

41

42

4
Bridging the gap between SMDP and TMDP: the SMDP+ model

The previous part provided an introduction to models and frameworks designed
to take the temporal consequences of actions into account in the MDP framework.
The TMDP formalism of [Boyan and Littman, 2001] seems to be a natural way of
modelling time dependency in MDPs. However, the connection with continuous-
time discrete-event decision processes such as SMDPs is unclear. In this chapter, we
will focus on the continuous observable time variable of the TMDP model and try to
establish the link between SMDPs and TMDPs. Namely, we answer the question
“are TMDPs equivalent to SMDPs with observable time?”. Another important
question we will try to answer regards the definition of inactivity: “How should
we describe idleness? Can it be described within a discrete event framework? Is
it equivalent to waiting?”. We introduce the SMDP+ model for this purpose,
highlight which criterion is really optimized in TMDPs in order to define policies,
and clarify these questions concerning idleness.

4.1 Making time observable in SMDPs

The first step in introducing time in MDPs was to define Semi-MDPs (section 2.2.2) and to
introduce continuous action duration. It appears natural to build on the SMDP model in
order to go one step further. This step corresponds to defining a model where time intervenes
not only as a random duration between decision epochs, but also as an observable continuous
variable in the state space, therefore permitting the definition of non-stationary, continuous
time, discrete event problems.

In the SMDP model, writing the transition model under the form of Q(τ, s′|s, a) =
P (s′|s, a) · F (τ |s, a), implicitly implies that:

• The model is stationary (no dependency on t in Q),

• The transition duration τ and the post-action state s′ are independent.

We introduce the SMDP+ model which extends the SMDP model with the following
features:

• Explicit dependency on the current date for the transition and reward models,

43

Chapter 4. Bridging the gap between SMDP and TMDP: the SMDP+ model

• Possible dependency between post-action state and sojourn time.

The problems we wish to consider do not usually satisfy the above conditions of station-
arity and independence between variables. For example, the outcome of a “take a photo”
action for the Mars rover depends on the time of day (non-stationarity) and its duration
depends on the success or failure of the action.

Time-dependency is expressed through continuous evolution of the model with re-
spect to the continuous time variable. Post-action states and action durations are
often linked.

In order to overcome this modeling issue, we define an SMDP+ as a 4-tuple 〈Σ, A,Q,R〉:
• Σ is the augmented state space containing all σ = (s, t) elements. This state space can

be decomposed into:

– a discrete state space s ∈ S,

– a continuous time axis t ∈ R.

• A is the discrete action space.

• Q(σ′|σ, a) is the cumulative transition model. It can be writtenQ(σ′|σ, a) = P (s′|s, t, a)·
F (t′|s, t, a, s′). As in SMDPs, F is the duration model’s cumulative distribution func-
tion. As previously and for convenience, we will write the probability density functions
indifferently as f(t′|s, t, a, s′) or f(τ |s, t, a, s′), with:

f(t′|s, t, a, s′) =
{

0 if t′ < t
f(τ = t′ − t|s, t, a, s′) if t′ ≥ t

• R(σ′, a, σ) is the reward model.

One can note that we can write either F (t′|s, t, a, s′) or F (τ |s, t, a, s′) as long as there is
no place left for ambiguity. In our notations, t′ always stands for the post-action date, while
τ = t′ − t always describes the transition duration (or the state’s sojourn time).

Using Bayes rule, we could similarly write the transition model on S as P (s′|s, t, a, t′) and
the duration model on t′ as F (t′|s, t, a) and obtain Q(σ′|σ, a) = P (s′|s, t, a, t′) · F (t′|s, t, a).
This is why the SMDP+ model is defined in terms of a Q(σ′|σ, a) function which — in prac-
tice — can be provided either as P (s′|s, t, a) ·F (t′|s, t, a, s′) or as P (s′|s, t, a, t′) ·F (t′|s, t, a).
In our experiments, the transition duration often depends on the post-action state (for move-
ment actions, for example) so we choose to use the P (s′|s, t, a) · F (t′|s, t, a, s′) notation, but
some examples where post-action states are more likely to depend on transition durations
can be expressed using the other formulation (as for a “run to catch the bus”) action.

An SMDP+ policy is defined as a function of S×R into A. Evaluating an SMDP+ policy
with respect to the discounted criterion of equation 4.1 yields equation 4.2.

V π(σ) = E

(∞∑
δ=0

γtδrπδ |σ0 = σ

)
(4.1)

44

4.2. Idleness in the SMDP+ model

V π(σ) =
∑
s′∈S

∞∫
0

(
R(s′, t+ τ, π(σ), σ) + γτV π(σ′)

)·f(τ |σ, π(σ), s′)P (s′|σ, π(σ))dτ = Ltπ(V π)(σ)

(4.2)
This equation is a natural extension of the standard MDP Lπ operator to the SMDP+

case. Similarly, the optimality equation becomes equation 4.3.

V ∗(σ) = max
a∈A

∑s′∈S
∞∫
0

(
R(s′, t+ τ, a, σ) + γτV ∗(σ′)

) · f(τ |σ, a, s′)P (s′|σ, a)dτ

 (4.3)

V ∗(σ) = LV ∗(σ)

This chapter focuses on modeling and solving TMDP problems. So, for clarity, we will
admit for now the intuition stating that these Lπ and L operators really provide the value
functions of π and π∗. Chapter 8 will focus on proving the mathematical foundations and
correctness of equations 4.2 and 4.3 in a more general framework.

Equations 4.2 and 4.3 illustrate the tight coupling between transition dynamics and
criterion whenever time is made observable: the τ duration used for the discount factor γτ

is also conditioning the post-action augmented state σ′ = (s′, t+ τ).

4.2 Idleness in the SMDP+ model

As we anticipated in section 2.2, as soon as we introduce continuous time, the idea of using
an available “wait” action comes to mind. Hence we need to answer the question: “is there
an idle action in the SMDP+ model?”. If so, how do we write its transition and reward
functions?

We need to consider two options: either we put an “idle” action in the action space A
or we don’t. The latter implies disabling the option of acting at specific times. If we do
not allow idleness, then actions are executed without interruptions and we loose one of the
interests of considering a continuous observable time. In the first case, we need to define the
transition and reward functions associated with the “wait” action, which highlights the fact
that “wait” is an abstract action which does not have a physical impact on the system as
long as we don’t associate it with a duration or an end date. More specifically, in TMDPs,
a natural modelling of a “wait” action is chosen so as to imply a deterministic effect on
the time variable. This effect itself is conditioned on the duration or end date parameter
of the action. Hence, “wait” needs to be associated with a proper parameter to gain the
meaning of an action operator. Then, for a “wait(tnext)” or “wait(τ)” action, one can write
the transition and reward models.

The “wait” action’s model can only be formalized with respect to some idleness du-
ration or ending date parameters. The transition and reward model are conditioned
on these parameters.

One simple remark concerning the fact that “wait” is chosen to be deterministic with
respect to the time variable in TMDPs: an engineer with a good sense of humour could

45

Chapter 4. Bridging the gap between SMDP and TMDP: the SMDP+ model

decide to model the sleepy behaviour of its robot. He could then state that the decision to
wait for 8 minutes might result in a different waiting duration — described for example by a
Gaussian process of average 8 and standard deviation 1 — because the robot can fall asleep
during idleness phases and not wake up exactly in time. This little example finds echoes
in real-world problems, for example waiting before sending a request to a web service can
sometimes end up in waiting for a lot longer than expected. This simple remark only high-
lights the fact that using a deterministic “wait” action is a deliberate choice, adapted to the
problem at hand, but which can be questioned for some applications. Since our purpose here
is to bridge the gap between SMDPs and TMDPs and since TMDPs consider a deterministic
“wait” action, we will use deterministic idleness in SMDP+. However one should keep in
mind that “wait(τ)” is not necessarily deterministic in real-world problems.

Additionally, it appears that being idle does not really correspond to “making no change”
to the process, since the system might evolve by itself during idleness phases (for example
the fuel resource can decrease, the exogenous processes might trigger transitions and change
their state, and — of course — our observable time changes). It appears that instead of
defining passive idleness, the wait(τ) (or wait(tnext)) action is a particular action which we
consider deterministic with respect to the time variable.

Intuitively, the notion of idleness in mission planning implicitly means “wait until it is
time to undertake a new action”. Thus, we can give an interpretation of the “idle” action
as a “let the system change on its own until the next decision epoch”. This next decision
epoch occurs whenever we enter any state whose date corresponds to the end of the idle-
ness. This notion can be illustrated in other words: since we only take decisions at decision
epochs’ dates, then the end of a “wait” action must match the date of the next decision epoch.

It appears that defining the “wait” transition function necessitates knowledge of the
decision epoch’s date. This “wait” action, applied in (s, t), takes the process to a new state
s′ described by the natural evolution of the process — everything happening if the agent does
not interact with the world, as described by equation 4.4 — and to the date corresponding to
the time of the next decision epoch as described by equation 4.5. Thus, the “wait” action’s
model depends on the dates of decision epochs. More specifically, the “wait” action is an
instantaneous jump to the date of the next decision epoch and to a state drawn according
to the undisturbed dynamics of the system W (s′|s, t, t′). This W (s′|s, t, t′) function captures
all the influences of what would be the exogenous processes if we were in an explicit-event
model.

Q(s′, t′|s, t, a) = P (s′|s, t, a) · F (t′|s, t, a, s′)
P (s′|s, t, wait, t′) = W (s′|s, t, t′) (4.4)

f(t′|s, t, wait) = 1tnext(t′) with tnext = min
δ∈N
{tδ|tδ > t} (4.5)

Q(s′, t′|s, t, wait) =
∫∞
−∞ P (s′|s, t, wait, t′) · f(t′|s, t, wait)dt′

This last paragraph illustrates the specificity of the time variable among state variables:

Planning with respect to a continuous observable time in MDPs and allowing idle-
ness actions does not imply knowing in advance the dates of the successive decision
epochs, however, it implies considering decision variables which correspond to these
dates — in the case of TMDPs these dates are the parameters of the deterministic
“wait” action.

46

4.3. Then what is the difference between waiting and idleness?

Moreover, from the policy representation point of view, since two successive “wait” ac-
tions yield the same result as a single longer one, we might need to factor the set of important
decision epochs per state, in order to reach an efficient and compact representation of a pol-
icy. In other words, while decision epochs are defined for the whole problem, only a few pivot
dates per state are crucial to the policy. This idea will be developed in chapter 9.

Finally, we particularize the wait action in the action space and write that A only contains
“standard” actions, while we write A+ = A ∪ {wait} the complete action space of the
SMDP+, where wait actually describes all possible instances of the wait(tnext) or wait(τ)
actions. Based on the previous definition of idleness and on this augmented action space, we
define policies over SMDP+ (and replace A by A+ in equation 4.3). This choice of explicitly
listing wait as an action marks an important difference with TMDPs and helps defining
policies using only the action space.

4.3 Then what is the difference between waiting and idleness?

The difference between “waiting” and “idleness” can be better explained by considering a
control theory point of view. A policy is a controller over a discrete event system. Each
action is an event conditioning the transition to a new state. More specifically, each action
remains a discrete event and the system’s evolution is made of discrete jumps from state
to state. This constitutes the discrete events systems paradigm: event-driven evolution.
Whenever the agent enters a new state, it immediately applies the action specified by its
policy which takes it directly to the post-action state. In real-time execution, this transition
might take time, but the controller is not reactivated until the agent enters the new state.
This discrete events system description is to be compared to the continuous control point
of view which continuously observes the state and applies the controller’s command. With
SMDP+ and TMDPs, we are dealing with the discrete events paradigm, so the evolution
of the system cannot be continuous. Idleness would correspond to the absence of action,
but the absence of action — synonym of the absence of event — in a discrete event system
means that the execution is finished and that the system has reached a terminal state. No
evolution is possible without events.

So the question is: should an SMDP+ policy be described by some temporal intervals
specifying an action and all the other intervals returning no action, or should it specify ac-
tions in the same intervals and “wait” actions outside? In the first case, we are out of the
discrete events control paradigm, in the second one, we have difficulties writing the precon-
ditions and effects of “wait”.

Modeling the continuous dynamics of the uncontrollable part of the environment — which
changes on its own, independently of the actions performed — turns to defining exogenous
events. The second part of the thesis will deal with such events, however, if the environ-
ment’s evolution modeling is continuous and if we allow a policy to return no action, then we
allow idleness and we define a hybrid controller which escapes both the discrete event and
the continuous control modeling frameworks since it requires features from both of them.
Such a hybrid controller continuously observes the state of the system while waiting and does
nothing until it reaches a new state where its policy prescribes an action, thus switching from
continuous to discrete control.

47

Chapter 4. Bridging the gap between SMDP and TMDP: the SMDP+ model

Therefore, defining idleness corresponds to defining the absence of action. This
takes the SMDP+ problem out of the discrete event control framework and into
a hybrid control framework. While defining waiting actions — associated with
appropriate parameters — corresponds to defining specific actions (which might
themselves rely on continuous parameters) to control the discrete events SMDP+.

We want to remain in the discrete event control formalism and therefore will describe
wait actions in our policies. We can keep in mind the possibility of only specifying actions
inside some intervals: the next paragraphs will show that in the “deterministic idleness”
case, idleness and waiting are equivalent.

4.4 Defining policies

An SMDP+ policy is defined as a mapping:

π :
{

Σ → A+
s, t 7→ a

(4.6)

Applying policy π corresponds to applying action π(s, t) in s at t. We build on the in-
tuition that in a given state s, there exist a finite number of intervals included in the [0;T]
interval — where T is the pseudo-horizon — over which the policy is constant. For standard
actions, this result comes from the fact that the action space A is finite. For wait actions, it
results from the fact that consecutive wait actions all tend to waiting for the same date.

A policy is finally evaluated using the criterion defined in equations 4.1 and 4.2.

Finally, we recall and complete the SMDP+ definition. SMDP+ can be defined by:

• Σ: the augmented state space containing all σ = (s, t) elements. This state space can
be decomposed into:

– a discrete state space s ∈ S,

– a continuous time axis t ∈ R.

• A+: the discrete action space containing standard SMDP actions and a family of
explicit wait actions defined by their parameters.

• Q(σ′|σ, a): the cumulative transition model.

• R(σ′, a, σ): the reward model.

4.5 Link between TMDP and SMDP+

We have extended the SMDP model to include s′/τ interdependency and explicit t depen-
dency. This yielded the SMDP+ model which highlighted the specific properties of an idle
action. We can now turn back to the TMDP model in order to determine whether the models
are equivalent — and if not, where the difference lies.

48

4.5. Link between TMDP and SMDP+

4.5.1 TMDPs are a special case of SMDP+

We recall the TMDP definition here for convenience as it was introduced in section 2.2.
TMDPs can be described as:

• S, a discrete state space

• A, a discrete action space

• M , a discrete set of outcomes µ = (s′µ, Tµ, Pµ) where:

– s′µ is the transition’s resulting state.

– Tµ is a boolean indicating whether the probability density function Pµ concerns
absolute dates or durations.

– Pµ(θ) is a probability density function describing the probability that the transi-
tion ends at time t = θ (if Tµ = ABS) or after a duration τ = θ (if Tµ = REL).

• L(µ|s, t, a) is a transition function1 giving the probability of triggering outcome µ.

• R(µ, t, t′) is the reward model associated with the realization of outcome µ, starting at
t and ending at t′.

• K(s, t) is the reward rate of the “wait” action in state s at time t.

It is then quite straightforward to remark that TMDP and SMDP+ dynamics are almost
equivalent. For all standard actions in A, we write:

SMDP+ ↔ TMDP
P (s′µ|s, a, t) = L(µ|s, a, t) (4.7)

f(t′|s, a, t, s′µ) = Pµ(t′) (4.8)
R(s, t, a, s′µ, t

′) = R(µ, t, t′) (4.9)

This parallelism between the two formalisms illustrates their equivalence for describing
standard actions’ dynamics when one can write transition durations as a function of the
transition outcome’s state. More specifically, it shows that the TMDP framework relies on
factoring transitions by actions’ outcomes: one transition is first composed of the action
choice, followed by the occurrence of an outcome, itself resulting in a single final state as
illustrated on figure 4.1. Therefore, TMDPs describe transitions by factoring them with
actions.

This last distinction illustrates the first difference between SMDP+ and TMDPs and a
strong restriction of TMDPs: the latter cannot represent cases where the transition’s out-
come would depend on the transition duration. For example, one cannot model the discrete
stochastic fuel consumption of a movement action as conditioned by the movement duration
in the TMDP model. On the other hand, since SMDP+ build on the generic basis of SMDPs,
they allow such action descriptions.

The main other difference lies in the definition of the “wait” action. The original TMDP of
[Boyan and Littman, 2001] defines the possibility for agents’ dawdling, specifying a “dawdling

1This L is not to be confused with the dynamic programming operator L introduced earlier. We keep this
notation in order to be consistent with the notations of [Boyan and Littman, 2001] and will explicitly make
the distinction between L and L when ambiguous.

49

Chapter 4. Bridging the gap between SMDP and TMDP: the SMDP+ model

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

Figure 4.1: TMDP - basic elements

cost” K. However, the action space of the TMDP does not include any “wait” action, con-
trarily to the action space A+ of the similar SMDP+. Instead, Boyan and Littman introduce
an extra step in the optimality equations in order to allow for some waiting between each
undertaken action. As we will see through the equations of the next paragraph, on top of
being deterministic with respect to the time variable, the implicit “idle” action of TMDPs
has a very strong restriction, it allows no evolution of the process while waiting: waiting
never changes the process’ state.

Therefore, our conclusion here is that TMDPs are a special class of SMDP+ problems
with an implicit “wait” action that needs to leave the process’ state unchanged.

4.5.2 Dynamic programming resolution of TMDPs

We now compare the criteria defined over SMDP+ and TMDPs. We will show — as the
intuition suggests – that the optimality equations introduced without mathematical justifi-
cation in [Boyan and Littman, 2001] correspond to a specific total reward criterion and that
the K function is indeed the reward rate of the implicit “wait” action.

In order to find policies for TMDPs using dynamic programming, [Boyan and Littman,
2001] introduce an optimality equation similar to Bellman’s equation. The idea is to use Value
Iteration in order to iteratively find the optimal value function. This optimality equation
should reflect a certain optimality criterion, but since the “idle” action is implicit and since
it participates in the optimality equation, it is not obvious to determine which criterion is
really optimized. The extended Bellman equation for TMDPs introduced in [Boyan and
Littman, 2001] is given by equations 4.10 to 4.13.

V (s, t) = sup
t′≥t

(∫ t′

t
K(s, θ)dθ + V (s, t′)

)
(4.10)

V (s, t) = max
a∈A

Q(s, t, a) (4.11)

Q(s, t, a) =
∑
µ∈M

L(µ|s, t, a) · U(µ, t) (4.12)

U(µ, t) =
{ ∫∞

−∞ Pµ(t′)[R(µ, t, t′) + V (s′µ, t′)]dt′ if Tµ = ABS∫∞
−∞ Pµ(t′ − t)[R(µ, t, t′) + V (s′µ, t′)]dt′ if Tµ = REL

(4.13)

The first equation indicates that the optimal expected value in s at time t corresponds
to the maximum gain we can hope to get by waiting until t′ and then applying an action.
Indeed, according to the other three equations, V (s, t) represents the maximum gain we can
hope for when we act immediately at t. This dynamic programming scheme over TMDPs
alternates an optimization phase where one acts immediately and a calculation phase indi-
cating how much one should wait between actions. This way, one obtains a policy defined as
π(s, t) = (t′, a). This policy indicates that, in state s and at time t, the action to undertake

50

4.5. Link between TMDP and SMDP+

is twofold: “wait until time t′ and then undertake action a”. We can note that t′ = t is pos-
sible, which preserves the generic nature of this kind of policy. Therefore, a TMDP policy
alternates between elements of A and “idle” phases (which can be of duration zero).

Since we now know that TMDPs are specific SMDP+ and that they simply impose
some implicit, static “wait” actions between each standard action, we can define a criterion
for SMDP+ and check if the optimality equations 4.10 to 4.13 match equation 4.3 for this
criterion. From a common sense point of view, equations 4.10 to 4.13 optimize the total
expected reward when alternating wait and action phases. We formally define a TMDP
policy as in equation 4.14 and a reward model as in equation 4.15.

π :
{

Σ → R+ ×A
s, t 7→ t′, a (4.14)

rπδ =
∫ t′π

tδ

K(sδ, θ)dθ +R(sδ, tδ, t′π) (4.15)

Then equations 4.10 to 4.13 correspond to finding the optimal expected total reward
value function for the TMDPa.

aThe proof is not provided here since it is very similar to proving that “wait” is a parametric
action in the XMDP framework which will be introduced in chapter 8. The latter proof is detailed
in section 8.4.

This way, we have shown that — once the “wait” action has been made explicit —
TMDP’s optimization through equations 4.10 to 4.13 is equivalent to the corresponding
SMDP+’s optimization with separate actions in A+.

One first important consequence of this result on TMDP optimization is that — as
in the standard MDP case — one needs to set supplementary hypotheses on the model
to guarantee the convergence of Bellman backups, because of this undiscounted criterion.
Namely, one should suppose that some states are either absorbing states with null reward or
terminal states, and that they are reachable from any point in the state space. With these
assumptions, we can safely use this total reward criterion. In practice, these requirements
are often met because we are usually in one of the two following cases (or a mix of the two):

• Bounded horizon problem: all reward functions are known until the pseudo horizon
and null afterwards, which guarantees convergence of the total reward criterion and
makes all actions equivalent after the pseudo-horizon. One can note that in this case,
the time variable is bounded and knowledge of the non-stationarity is only necessary
inside the bounds on time.

• Stochastic Shortest Path: the reward model is bounded, terminal goal states are reach-
able from anywhere in the state space and no action is allowed in them, yielding a zero
probability of an infinite execution path and a finite total reward criterion. In this
case, no hypothesis is made on the pseudo-horizon and the reward models.

Lastly, in order to model more realistic situations, one would need to describe the process’
evolution during waiting phases. The general case of SMDP+ presented in equations 4.4 and
4.5 cannot be captured by the TMDP framework since TMDPs impose that the process
is static during idle phases. However, it is possible to adapt [Boyan and Littman, 2001]’s

51

Chapter 4. Bridging the gap between SMDP and TMDP: the SMDP+ model

equation 4.10 slightly to match the case of deterministic evolution during idleness. For
this purpose we note s′ = w(s, t, t′) the resulting state of a “wait” action according to the
deterministic probability density function W (s′|s, t, t′). This way — if we suppose that the
system’s evolution is deterministic during dawdling phases — equation 4.10 can be replaced
by equation 4.16.

V (s, t) = sup
t′≥t

(∫ t′

t
K(w(s, t, θ), θ)dθ + V (w(s, t, t′), t′)

)
(4.16)

4.5.3 Policy equivalence

We have now shown that TMDPs were a specific class of SMDP+ problems for which:

• The “wait” action is not explicitly listed in the action space.

• The “wait” action is static, ie. waiting never changes the process’ state.

• The optimality equations correspond to a total reward criterion.

The last thing to compare between TMDPs and SMDP+ deals with optimal policies.
We need to verify that the execution of an SMDP+ optimal policy and the corresponding
TMDP policy yield the same execution path.

An SMDP+ policy is given as: “at any time step t, there exists an optimal action to
undertake, this action might be waiting, which lets the process change on its own until the
next decision epoch’s date”. A TMDP policy, however, defines pairs of actions “wait until
t′ then do a”. The problem of showing the equivalence of these two behaviours deals with
proving that for all instants t′′ between t and t′, the SMDP+ policy’s action remains idleness.
We can turn the problem differently and show that for any date t′′ between t and t′, the
TMDP policy’s behaviour is constant and equal to “wait until t′ then act”. We focus on
proving this second point.

In order to clarify things we can take the example presented on figure 4.2. Suppose
that we are in state s, at time t1. The SMDP+ policy specifies the explicit “wait” action
as the action to perform. An outside observer anticipating on the policy can remark the
next action will be a and will be started at time T (in-between, the optimal action remains
“idle”). On the other hand, the TMDP policy prescribes to undertake action “wait until T1

then execute a”. By writing down the model’s equivalence (equations 4.7 to 4.9) and the
optimality equation (equation 4.3) we find that T = T1. The main remaining question is to
determine if — by picking t2 between t and T1 — the TMDP policy in (s, t2) is consistent
with the SMDP+ policy, ie. if T2 = T1 and a′ = a.

If we prove that T2 = T1, then the a = a′ result is immediate. Indeed, equation 4.11
shows that the action to undertake at T1 is uniquely defined by the function V (s, T1). There-
fore, all we need to prove is that T2 = T1.

We introduce the function T (s, t) which gives the waiting end date:

T (s, t) :

S × R → R

(s, t) 7→ argsup
t′≥t

{∫ t′

t
K(s, θ)dθ + V (s, t′)

}
(4.17)

Then we want to prove the following proposition:

52

4.5. Link between TMDP and SMDP+

SMDP+ :

tt1 T

explicit wait a

TMDP :

tt1 t2

T1

T2

implicit wait

implicit wait

a

a ′

T1 = T2 ?

Figure 4.2: Equivalence of SMDP+ and TMDP optimal policies

Proposition. Let s ∈ S be a state and t1 ∈ R a time such that T (s, t1) > t1. Let t2 ∈ R be
another time such that t2 ∈ [t1, T (s, t1)]. Then we have T (s, t2) = T (s, t1).

t1 t2 T (s, t1)

TMDP policy:

SMDP+ policy: wait(T) a

(T (s, t1), a) (T (s, t2), a)

T (s, t2) = T (s, t1) ?

Figure 4.3: The policy equivalence problem

This proposition is illustrated on figure 4.3 and corresponds to the problem we presented
on figure 4.2.

Proof. We have
∫ t′

t1

K(s, θ)dθ + V (s, t′) =
∫ t2

t1

K(s, θ)dθ +
∫ t′

t2

K(s, θ)dθ + V (s, t′).

And T (s, t1) > t2 (the first sup is reached after t2), so:

argsup
t′≥t1

{∫ t′

t1

K(s, θ)dθ + V (s, t′)

}
= argsup

t′≥t2

{∫ t′

t1

K(s, θ)dθ + V (s, t′)

}
.

Thus:

T (s, t1) = argsup
t′≥t2

{∫ t′

t1

K(s, θ)dθ + V (s, t′)

}

= argsup
t′≥t2

{∫ t2

t1

K(s, θ)dθ +
∫ t′

t2

K(s, θ)dθ + V (s, t′)

}

53

Chapter 4. Bridging the gap between SMDP and TMDP: the SMDP+ model

But
∫ t2

t1

K(s, θ)dθ is constant with respect to t′, it does not affect the argsup. Therefore:

T (s, t1) = argsup
t′≥t2

{∫ t′

t2

K(s, θ)dθ + V (s, t′)

}
.

And finally: T (s, t1) = T (s, t2).

Finally we have proven that the two optimal policies defined as SMDP+ policies or
TMDP policies are equivalent.

4.5.4 Generic nature of TMDP policies

Lastly, it is relevant to note that TMDP policies can capture any sequence of decisions within
a TMDP model. Namely, alternating phases of idleness and phases of action does not restrict
the set of policies we can consider. This comes from the following reason. If in state s, the
optimal policy is to perform a1 between t0 and t1 and a2 between t1 and t2, then the TMDP
policy can be written as:

π(s, t) =
{

(t, a1) if t ∈ [t0, t1[
(t, a2) if t ∈ [t1, t2[

In other words, chaining actions (a3, a2, a7) during a given execution path would be
strictly equivalent to the sequence (wait(τ = 0), a3, wait(τ = 0), a2, wait(τ = 0), a7) because
of the three implicit properties of the TMDP wait2:

• wait is static in terms of state evolution (waiting leaves the process’ state unchanged).

• wait is deterministic with respect to the time variable.

• wait(τ = 0) provides a zero reward.

These three properties allow TMDP policies to be as generic as SMDP+ ones. One could
actually find weaker properties for which such a genericity would be preserved. Namely, if:

• wait(τ = 0) is static,

• wait(τ = 0) provides a zero rewards,

then wait(τ = 0) is a no-op action and can be inserted infinitely often between other actions.
TMDP policies break this infinite number of possible insertions by imposing a single waiting
action between each other action.

4.6 Conclusion

This concludes this paragraph on the comparison between SMDP+ and TMDP. Its main
purpose was to establish the link between the ad hoc definitions of the TMDP model and
the theory of stochastic decision processes. This comparison highlighted the limits of the
TMDP model and its properties. In conclusion:

2wait(τ = 0) is the null duration waiting in TMDPs, it is actually a shortcut for the implicit wait(t′ = t)
in the TMDP action π(s, t) = (t, a).

54

4.6. Conclusion

A TMDP is a total reward criterion SMDP+ where the “wait” action is implicit.
This is made possible because this same “idleness” action is static in terms of the
state’s evolution (waiting leaves the process’ state unchanged) and deterministic
with respect to time. Since the wait action is implicit, TMDP policies are a constant
alternate of standard actions and idleness phases. Such a policy’s genericity is only
preserved due to the fact that “wait” does not affect s and that its reward model
yields reward 0 for zero-duration waiting. One could notice that such a genericity
would still be preserved under the weaker condition that wait(τ = 0) leaves the
process’ state unchangeda and induces no cost or reward.

athis remains true as long as wait is the only parametric action. The general case of parametric
actions will be developed in chapter 8.

This analysis raises some questions concerning the nature of this “wait” action. Namely:

• What if there are other continuous parametric actions like “wait”?

• How do we model the exogenous evolution of the world in TMDPs, how do we use the
W function of SMDP+?

• Is there a more general framework — derived from MDPs — for planning with contin-
uous time and parametric actions?

• More specifically, couldn’t we write a framework with sequences of extended actions
(avoiding the permanent switching of wait/action which is — somehow — a tweak in
the TMDP resolution) which would be similar to the standard MDP case?

We will bring an answer to these questions in the more general framework of XMDPs,
in chapter 8. In conclusion, we have shown the expressivity and the limits of the TMDP
framework. In particular, its implicit wait action is not generic: it corresponds more to an
action that would deterministically “freeze” the process state and move to an other date in
time. This important feature was highlighted by the more general wait operator of SMDP+.
For now, we will use the TMDP framework and notations and will focus on studying and
improving the resolution of TMDPs.

55

Chapter 4. Bridging the gap between SMDP and TMDP: the SMDP+ model

56

5
Solving TMDPs via Dynamic Programming

The previous chapter connected the TMDP framework to the general case of MDPs
and SMDPs. It illustrated the fact that the optimality equation on TMDPs corre-
sponded indeed to a total reward criterion over the execution. In this chapter, we
focus on this optimality equation. Our goal is to analyze why an exact resolution
was possible in the case of [Boyan and Littman, 2001], how we can extend it and
what computational tools we need to perform Bellman backups on TMDPs.

5.1 Optimality equations and value function properties

The optimality equations established on the total reward criterion for TMDPs in the last
chapter are the basis of the dynamic programming approach to solving TMDPs. Equations
4.10 to 4.13 provide a straightforward value iteration scheme in order to find the optimal
value function as presented in equations 5.1 to 5.4.

Vn+1(s, t) = sup
t′≥t

(∫ t′

t
K(s, θ)dθ + V n(s, t′)

)
(5.1)

V n(s, t) = max
a∈A

Qn(s, t, a) (5.2)

Qn(s, t, a) =
∑
µ∈M

L(µ|s, t, a) · Un(µ, t) (5.3)

Un(µ, t) =
{ ∫∞

−∞ Pµ(t′)[R(µ, t, t′) + Vn(s′µ, t′)]dt′ if Tµ = ABS∫∞
−∞ Pµ(t′ − t)[R(µ, t, t′) + Vn(s′µ, t′)]dt′ if Tµ = REL

(5.4)

In their 2001 paper, Boyan and Littman show that under some conditions, TMDPs can
be solved exactly using Value Iteration. These conditions are:

• L and K are piecewise constant functions with respect to t.

• R can be decoupled into a sum of piecewise linear reward functions:

R(µ, t, t′) = rt(µ, t) + rt′(µ, t′) + rτ (µ, t′ − t) (5.5)

• Pµ is a discrete probability density function.

Even though the first two conditions are acceptable in order to model and approximate any
kind of transition model and reward function, one might wish for more expressive function

57

Chapter 5. Solving TMDPs via Dynamic Programming

shapes. On top of that, looking at discrete probability density functions for Pµ turns out
to be a good approximation of the distributions but also takes the process back to the case
of discretized transition durations. In this chapter, we will analyse the optimality equations
presented above (equations 5.1 to 5.4) and will extend them to more general classes of func-
tions. More specifically, we will show where the limit for exact resolution can be pushed with
our approach and how we adapt the exact resolution to the approximate case by generalizing
piecewise constant and linear functions to general piecewise polynomial functions.

The core question of this chapter can be stated as follows: we are looking for a value
function V (s, t) obeying the previous Bellman’s equation. While in the discrete case, tabular
representation is the simplest common basis to all representations of the value function, in
the continuous case we deal with function spaces. These function spaces are generally hard
to approximate and represent because of their infinite dimension. Hence, we are looking for
a shape of V which is an efficient approximation and representation framework as well as an
adapted formulation for the operations of equations 5.1 to 5.4. The dynamic programming
approach relies on the fact that the Bellman’s operator is a contraction mapping over value
function space and admits a fixed point. In order to build an exact resolution scheme, it
is useful to find a family of functions which would be stable by application of L. In other
words, we are looking for a class of functions C for which:

∀V ∈ C, LV ∈ C (5.6)

However, this search for an “L-stable” class of functions C should be done while keeping
in mind the practical fact that operations on V should be easily computable. Also, we will
need to compute operations between V and L1, Pµ, K and R, which suggests that they
might need to belong to the same class C.

5.2 Piecewise polynomial functions

The choice we made in order to restrict the set of functions in which we search the elements
of C is to look at piecewise polynomial functions. There are several reasons for that.

First of all, the initial representation of [Boyan and Littman, 2001] dealt with piecewise
constant and linear functions; the transition to piecewise polynomials seems natural. The
hard point will be to go from discrete probability density functions to piecewise polynomial
ones and to extend the exact resolution method to this generalization.

Secondly, it is easy — in terms of computation — to approximate any distribution or
function by a polynomial or a set of polynomials. The theory of splines ([Ahlberg et al.,
1967]) is mainly based on this idea.

Moreover, while some phenomena might be better understood and represented with stan-
dard distributions such as Bêta, Gaussian, exponential, etc., we need to consider the question
of how we will deal with the elements of C in our algorithms. Equation 5.4 is our main con-
cern here, since a closer look shows that we will have to compute convolutions of Pµ and
R for example. Since we are trying to extend the exact resolution of [Boyan and Littman,
2001], we need to be able to analytically compute these convolutions and other calculations.
Polynomials convolution yields a new polynomial. Even though it is not a straightforward
calculation by hand, it remains an easy analytical machine-calculated result in most cases.

1Here, the TMDP’s transition model.

58

5.3. Finding a closed-form solution to Bellman’s equation

Convolution of piecewise polynomials follows the same rule and is a feasible solution to the
problem of computing the approximate analytical result of two function’s convolution while
such calculations might be a lot more complicated to perform on distributions such as Gaus-
sian, Bêta or Dirichlet which have implicitly defined cumulative distribution functions.

Third, as in [Boyan and Littman, 2001] we might want to model non-continuous functions
in order to take into account drastic discontinuities in the transition, duration and reward
models. This discontinuity applies to specific points in time and the evolution is continuous
in-between. Using a piecewise continuous representation for the duration distributions too
(instead of discrete probability density functions) might help preserve this property instead
of defining more and more different intervals as the number of value iterations grows.

Finally, when we look at the problems presented in section 1.3.1, we can see that the
exact shape of the distributions is not always essential to the resolution and that an approx-
imation of their probability density functions is often an acceptable model. Additionally,
these probability density functions can present local regularities and specific discontinuities
which are easily modeled as splines or — more generally — piecewise polynomial functions.
A simple example of this point is given on figure 5.1 where we have represented the probabil-
ity of triggering the outcome “at destination” when we decide to take the train from INRA
to ONERA (the other outcomes might be to end up lost in the wrong station for example)2.

9h10 9h20 9h30 t

L(µ|s, t, a)

Figure 5.1: Example of L(µ|s, t, a) function

Our point here is not to indicate that piecewise polynomial representations are better
than other ones — which is obviously not the case. However, the arguments above are the
practical reasons which led us to choose such representations in order to extend the exact
resolution of TMDPs and to build an approximate resolution scheme. From now on, we will
try to find a closed-form solution to equations 5.1 to 5.4 by considering families of functions
which are as general as possible. When needed, we will base our reasoning and our search
for such a closed-form solution on the piecewise polynomial representation of continuous
functions and probability distributions.

5.3 Finding a closed-form solution to Bellman’s equation

We will now take equations 5.1 to 5.4 and try to see how V changes when we apply these
equations.

2Note that this function is not a probability density function on the time variable, it is a probability on µ
which depends on time. Thus it needs not sum to one when integrated over its definition interval (contrary
to the Pµ distributions, for instance).

59

Chapter 5. Solving TMDPs via Dynamic Programming

Let us consider equation 5.1:

Vn+1(s, t) = sup
t′≥t

(∫ t′

t
K(s, θ)dθ + V n(s, t′)

)

According to Boyan and Littman’s hypotheses, K(s, θ) is a piecewise constant function

so
∫ t′

t
K(s, θ)dθ is a piecewise linear function of t and t′. Let us take a simple example and

observe which operations are performed to obtain Vn+1(s, t) if we suppose V n(s, t′) known
and if we write K(s, θ) = −k. We have Vn+1(s, t) = kt + sup

t′≥t

(−kt′ + V n(s, t′)
)
. The time

T (s, t) defined by equation 4.17 corresponds to sup
t′≥t

(−kt′ + V n(s, t′)
)
. Figure 5.2 illustrates

how we go from any V n(s, t) to Vn+1(s, t). First we calculate f(t′), then g(t) and finally
Vn+1(s, t).

0 1 2 3 4 5
0

1

2

t′

V (s, t′)

0 1 2 3 4 5
0

1

2

t′

f(t′) = V (s, t′)− kt′

t

g(t) = sup
t′≥t

f(t′)

0 1 2 3 4 5
0

1

2

t

V (s, t) = kt + g(t)

0 1 2 3 4 5
0

1

2

Figure 5.2: Illustrating equation 4.10

We can look at the variations of Vn+1(s, t) with respect to t. Let t1 and t2 be two instants
with t1 < t2. We want to compare Vn+1(s, t1) and Vn+1(s, t2). We need to distinguish two
cases:

1. First case: T (s, t1) ≥ t2. We saw in section 4.5.1 that in this case we have T (s, t1) =

60

5.3. Finding a closed-form solution to Bellman’s equation

T (s, t2). Therefore:

Vn+1(s, t1) = sup
t′≥t1

(−k(t′ − t1) + V n(s, t′)
)

= sup
t′≥t1

(−k(t′ − t2) + V n(s, t′)
)− k(t2 − t1)

= sup
t′≥t2

(−k(t′ − t2) + V n(s, t′)
)− k(t2 − t1)

= Vn+1(s, t2)− k(t2 − t1)

and so:
Vn+1(s, t2)− Vn+1(s, t1)

t2 − t1 = k (5.7)

Consequently, Vn+1(s, t) is growing with slope k between t1 and t2. This can be physi-
cally interpreted the following way: if we consider the process is in a state s where the
optimal action is to wait in order to get a better reward later, then the expected gain
found in t1 will be lower than the one in t2 because while the expected reward is the
same in the future state, the waiting duration is greater for t1 (and so is the waiting
cost). This situation is illustrated by the linear segments in the representation of Vn+1

in figure 5.2.

2. Second case: T (s, t1) < t2. Now there is an action to undertake in T (s, t1) and the
problem considered in t2 is totally different since we cannot plan to undertake actions
in the past. Therefore we know that:

Vn+1(s, t1) = sup
t′≥t1

(−k(t′ − t1) + V n(s, t′)
)

= sup
t′∈[t1,t2]

(−k(t′ − t1) + V n(s, t′)
)

, so:

Vn+1(s, t1) ≥ sup
t′≥t2

(−k(t′ − t1) + V n(s, t′)
)

≥ sup
t′≥t2

(−k(t′ − t2) + V n(s, t′)
)− k(t2 − t1)

≥ Vn+1(s, t2)− k(t2 − t1)

and so:
Vn+1(s, t2)− Vn+1(s, t1)

t2 − t1 ≤ k (5.8)

This result insures there is no waiting duration allowing for a better expected gain. If
we consider an infinitely small distance between t1 and t2, then this result illustrates
the fact that V n doesn’t grow fast enough with t′ to compensate the loss due to the
waiting cost rate k. Then it is better to act instantly than to wait. These are the cases
where t′ = t illustrated on figure 5.2 by the regions where Vn+1(s, t) = V n(s, t).

Finally the slope of the expected gain Vn+1 as a function of time is bounded by the
opposite of the cost rate. This is not a pessimistic conclusion, on the contrary it provides an
upper bound on the value function’s improvements: when one is in s at t and knows V (s, t),
then he knows that waiting until t′ will provide future rewards of at most −k(t′ − t).

On top of providing a rough sketch of the algorithm we develop a little further, this
analysis of Vn+1(s, t)’s variations brings up the following conclusion: on some intervals, Vn+1

is piecewise linear (due to k being piecewise constant, this hypothesis might be relaxed to

61

Chapter 5. Solving TMDPs via Dynamic Programming

piecewise polynomial functions later) and on the others it belongs to the same function class
as V n. We write this last function class D. If we write Pm the set of piecewise polynomial
functions of degree m defined on R, then in order to characterize the class C we can write:

∀V ∈ C, ∃(p1, V) ∈ P1 ×D / V = p1 + V (5.9)

We can now keep on sweeping through the optimality equation and look at equation 5.4:

Un(µ, t) =

∫ ∞
−∞

Pµ(t′)[R(µ, t, t′) + Vn(s′µ, t
′)]dt′ if Tµ = ABS∫ ∞

−∞
Pµ(t′ − t)[R(µ, t, t′) + Vn(s′µ, t

′)]dt′ if Tµ = REL

By using equation 5.5’s decomposition, we have:

Un(µ, t) =

∫ ∞
−∞

Pµ(t′)[rt(µ, t) + rt′(µ, t′) + rτ (µ, t′ − t) + Vn(s′µ, t
′)]dt′ if Tµ = ABS∫ ∞

−∞
Pµ(t′ − t)[rt(µ, t) + rt′(µ, t′) + rτ (µ, t′ − t) + Vn(s′µ, t

′)]dt′ if Tµ = REL

We write Sµ(t′) = Pµ(−t′) and develop the previous expressions3:

Un(µ, t) =

(∫ ∞
−∞

Pµ(t′)dt′
)
rt(µ, t) +

∫ ∞
−∞

Pµ(t′)rt′(µ, t′)dt′ + (Sµ ∗ rτ (µ, ·))(−t)+∫ ∞
−∞

Pµ(t′)Vn(s′µ, t
′)dt′ if Tµ = ABS

(∫ ∞
−∞

Pµ(t′ − t)d(t′ − t)
)
rt(µ, t) + (Sµ ∗ rt′(µ, ·))(t)+∫ ∞

−∞
Pµ(t′ − t)rτ (µ, t′ − t)d(t′ − t) + (Sµ ∗ Vn(sµ, ·))(t) if Tµ = REL

1. For the first case (Tµ = ABS) and with the piecewise polynomial reward model hy-
pothesis, the U function has the shape of “Pm + constant + E(t) + constant”.

The function class E depends on Sµ. If Pµ is piecewise polynomial then E = Pm. This
is the case we will be using in the rest of this section. We will discuss the value of m
a little further. For now we only write that U ∈ Pm. In order to explain this choice a
little better, the next paragraph briefly presents what would happen if we used other
distributions than piecewise polynomial. The main result here is that the analytical
calculation through value iteration method is not adapted to implicitly defined cu-
mulative distribution function (as for Gaussian or Bêta distributions) and piecewise
continuous r and V .

3As indicated on page xi, ∗ is the convolution operator.

62

5.4. Bounding the polynomials’ degree

In the case of Tµ = ABS, and for a polynomial representation of r, calculating the two
first terms of Un implies calculating the moments of the Pµ distribution. Now if r is
defined by pieces, we need to compute separately the “moments” of the Pµ distribution
over the different definition intervals of r as illustrated in appendix A. From a practical
point of view using Gaussian or Bêta distributions (for which there is no exact result
for this calculation) prevents from performing the exact resolution of TMDPs. On the
other hand, it is possible to use distributions from Pm or discrete distributions for this
calculation. The case of discrete distributions will be considered later.

2. For the second case (Tµ = REL) and with the piecewise polynomial reward model
hypothesis, the U function has the shape of “Pm + constant + E(t) + Sµ ∗ V ”.

The first terms in Un’s expression allow us to draw the same conclusions as above: the
computation is feasible if Pµ ∈ Pm. However, the last term’s calculation raises some
questions. We know V is a piecewise C function but we do not have any result con-
cerning its stability by convolution with an element of Pm. For this reason, we decide
to further restrict the function space in which we search for elements of C in order to
find an L-stable family of functions.

From here on, we will look for V in the space of piecewise polynomial functions too.
This allows us to keep the property of stability by convolution. Therefore we write
V ∈ Pm.

5.4 Bounding the polynomials’ degree

We can now take a look at the degree of the elements of Pm and at how we perform the
Bellman update. For this purpose, we need to refine the notations. Let DPm be the set of
piecewise polynomial probability density functions of degree lower or equal to m. We will
write:

• Pµ ∈ DPA
• ri ∈ PB
• L ∈ PC

We extend the DPm set for m = −1 to the set of discrete distributions. This extension
is justified by the fact that the convolution of two polynomials of degree p and q yields a
polynomial of degree p+q+1, while the convolution of a polynomial of degree p by a discrete
distribution yields a polynomial of degree p as if the degree of the discrete distribution was
−1. The degree of Vn is noted Dn and our goal now is to go through one Bellman backup
to determine the degree Dn+1 of Vn+1.

Let d◦() be the “degree” operator over polynomials. Equation 5.4 yields:

• if Tµ = ABS : d◦(Un) = A+B + 1

• if Tµ = REL : d◦(Un) = max{A+B + 1, A+Dn + 1}

63

Chapter 5. Solving TMDPs via Dynamic Programming

If we start the algorithm with a degree zero value function, then we can write — at least
for the first iterations: ∀µ ∈M, Un(µ, ·) ∈ PA+B+1

4.

Consider now equation 5.3:

Qn(s, t, a) =
∑
µ∈M

L(µ|s, t, a) · Un(µ, t)

The result is immediate: ∀(s, a) ∈ S ×A,Qn(s, ·, a) ∈ PA+B+C+1.

Equation 5.2 does not change the polynomial’s degree since it builds a new polynomial
by aggregating pieces of Qn. Therefore: d◦(V) = A+B + C + 1.

Finally, equation 5.1 closes the loop and provides the result on Dn+1:

Dn+1 = A+B + C + 1 (5.10)

Or with the max operator:

Dn+1 = max{A+B + C + 1, A+Dn + C + 1} (5.11)

Finally, we can draw some conclusions: if d◦(V) is initially equal to zero, then
after the first Bellman backup D1 = A + B + C + 1. After the second backup,
D2 = 2A+B+2C+2, etc. Therefore, d◦(V) necessarily increases with the iterations
unless A+ C = −1. The only possible case corresponding to A+ C = −1 is found
for A = −1 and C = 0. This case corresponds to the situation where:
• Pµ is a discrete probability distribution function.

• L is a piecewise constant function.

• The ri functions are any piecewise polynomial function of degree B.
Only in this case can we conclude that V always has degree B.

5.5 Is it possible to extend the exact resolution?

The previous paragraphs established a more general result on the stability of V through the
TMDP Bellman backups and provided some insight regarding the reason why [Boyan and
Littman, 2001] could perform such a resolution. The next question is to try to find all cases
where such an exact resolution is feasible — under the modeling hypotheses given at the
beginning of section 5.1, namely piecewise polynomial functions and piecewise polynomial or
discrete distributions. In the case of an ever-increasing degree of V there is no convergence
of Value Iteration since the polynomials’ degree keep growing. Actually, convergence is pos-
sible but the optimal value function might have an infinite degree. Thus an exact resolution
necessarily implies A+C = −1. Then we need to check if all values of B allow for an exact
calculation of V ’s coefficients.

For all values of B, equation 5.4 can be easily solved since we know how to calculate
the coefficients of Un without approximation5. The same remark also holds for equation 5.3.
However, equation 5.2 implies to find — for a fixed s — the intersections of the |A| curves
of (Q(s, t, a))a∈A. This corresponds to finding the roots of several polynomials of degree B.
This operation is known to be feasible without approximation only in the following cases:

4The calculations can easily be done with the max operator, the reasoning is the same.
5for details please see appendix A

64

5.5. Is it possible to extend the exact resolution?

• B = 0, trivial case

• B = 1, linear case

• B = 2, Newton’s formula

• B = 3, Cardan’s or Sotta’s Formula

• B = 4, Ferrari’s or Descartes’s formula

For B ≥ 5 Galois proved that there was no general method to find the exact roots of a
polynomial in a finite number of calculations. An interesting approximation technique used
to find the smallest real root is Sturm’s method6 ([Sturm, 1835]).

Finally, equation 5.1 imposes to find the maxima of piecewise polynomial functions of
degree B. This corresponds to finding the roots of polynomials of degree B−1; if B < 6 this
is an exact calculation. Thus, the limiting constraint here comes from equation 5.2. Lastly:

Exact resolution of TMDPs with piecewise polynomial modeling is feasible if:

Pµ ∈ DP−1

ri ∈ P4

L ∈ P0

(5.12)

These results highlight the reason why there is little room for extension of [Boyan and
Littman, 2001]’s exact resolution scheme. However, this analysis opens the door to the un-
derstanding of an approximate resolution in Pm.

The next chapter will present how the exact resolution is calculated, followed by the
approximate resolution scheme. This chapter’s conclusion generalizes the results presented in
[Boyan and Littman, 2001] by showing the limits of the piecewise polynomial representation
framework for exact resolution and by allowing to focus on the difficulties associated with
approximate resolution of piecewise polynomial TMDPs.

6for details please see appendix A.

65

Chapter 5. Solving TMDPs via Dynamic Programming

66

6
The TMDPpoly algorithm: solving generalized TMDPs

Bellman backups over TMDPs with piecewise polynomial transition, reward and
duration functions can be performed analytically, yielding piecewise polynomial
value functions. The previous chapter defined the cases when the value function’s
degree was stable throughout the iterations and when the calculations could be
made without approximation. On this basis, we introduce the TMDPpoly algorithm
which combines analytical computation of Bellman backups on value functions (with
either exact or approximate calculations), L∞-bounded value function approxima-
tion and prioritized dynamic programming for solving the general case of piecewise
polynomial TMDPs.

In the case where the TMDP definition obeys equation 5.12 it is possible to perform
analytical calculations for the successive Bellman backups of Value Iteration. The next
paragraph summarizes the properties obtained from the previous chapters which are used
in order to solve TMDPs. It also introduces the basis of the TMDPpoly algorithm which is
detailed in the rest of the chapter.

6.1 Extending exact TMDP resolution: some conclusions and proper-
ties

1. Closed-form Bellman backups: If the reward, transition and duration functions of a
TMDP model obey equation 5.12, then value iteration yields a sequence of piecewise
polynomial value functions which have a stable (non-increasing) degree.

2. Interleaving idleness and action: TMDP resolution can interleave “wait” and “action”
phases because wait(τ = 0) is an action which has no effect on the process’ state and
no effect on rewards.

3. Decoupling the equations: Interleaving these phases corresponds to alternating wait
and other actions. The consequence on the optimality equations is a decoupling of the
calculation. One can calculate first the Q-values of standard actions’ (equation 5.3),
find the optimal action and the associated value function V (equation 5.2) and then
calculate wait(t′)’s Q-value as in equation 6.1 and choose the best t′ (equation 5.1).

Q(s, wait(t′)) = Qwait(s, t′) =
∫ t′

t
K(s, θ)dθ + V (s, t′) (6.1)

67

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

4. Ordering dynamic programming passes: As presented in section 2.3.3, making time
observable in a planning problem avoids transitions that loop exactly on the same aug-
mented state. However, loops are possible if one only takes the discrete, non-temporal
part of the state space into account. The resolution scheme presented above updates
the value function, in each discrete state, for all t. Therefore, taking the structure
of time and causality into account in TMDP solving via dynamic programming cor-
responds to updating the states in a pertinent ordering. Intuitively, a good strategy
would be to update first the states that are close to the “reward providing states”. The
idea of updating the states that have important value function change is generalized
in the prioritized sweeping algorithm first introduced by [Moore and Atkeson, 1993].

Based on these remarks, we try to design an algorithm which implements a simple version
of prioritized sweeping on the TMDP framework, first with the exact resolution hypotheses,
then with an approximation scheme which allows faster convergence and easier calculations.

6.2 Exact calculation of Bellman backups

We take a model which verifies equations 5.12, namely:

• Pµ is a discrete distribution (as in figure 6.1),

• L is a piecewise constant function of t,

• The (ri)i∈{t,t′,τ} functions are piecewise polynomial functions of degree B ≤ 4.

More specifically, we can write:

• In the Tµ = ABS case, Pµ(t′) =
M∑
i=1

Pai · δai(t′) where δai is Dirac’s probability distri-

bution shifted to ai. Hence: Sµ(t′) =
P∑
i=1

Pai · δ−ai(t′).

• In the Tµ = REL case, Pµ(t′ − t) =
M∑
i=1

Pdi · δdi(t′ − t). Therefore: Sµ(t′ − t) =

M∑
i=1

Pdi · δ−di(t′ − t).

• rτ (µ, τ) =
B∑
j=0

bjτ
j

Let us take the optimality equations one by one. For equation 5.4, case ABS, one has:

Un(µ, t) =
∫ ∞
−∞

Pµ(t′)
[
rt(µ, t) + rt′(µ, t′) + rτ (µ, t′ − t) + Vn(s′µ, t

′)
]
dt′

= rt(µ, t)
(∫ ∞
−∞

Pµ(t′)dt′
)

+
∫ ∞
−∞

Pµ(t′)rt′(µ, t′)dt′ +
∫ ∞
−∞

Pµ(t′)rτ (µ, t′ − t)dt′+∫ ∞
−∞

Pµ(t′)Vn(s′µ, t
′)dt′

= rt(µ, t) + (rt′ ∗ Sµ) (0) + (rτ ∗ Sµ)(−t) + (Vn ∗ Sµ)(0)

= rt(µ, t) +
M∑
i=1

Pai
(
rt′(µ, ai) + rτ (µ, ai − t) + Vn(s′µ, ai)

)
68

6.2. Exact calculation of Bellman backups

a1 a2 a3 a4

Pai

t′

M∑
i=1

Pai = 1

Figure 6.1: Discrete distribution example

We study separately this equation’s four right-and side terms. The first term is a degree
B polynomial. The second and fourth terms are constant with respect to t. The third term
is calculated as follows:

rτ (µ, ai − t) =
B∑
j=0

bj(ai − t)j

=
B∑
j=0

bj

j∑
k=0

Ckj ai
j−k(−t)k

= tB
[
bBC

B
B (−1)B

]
+

tB−1(−1)B−1
[
bBC

B−1
B ai + bB−1C

B−1
B−1

]
tB−2(−1)B−2

[
bBC

B−2
B ai

2 + bB−1C
B−2
B−1ai + bB−1C

B−2
B−2

]
...

tl(−1)l
[
B∑
k=l

bkC
l
kai

k−l
]

...

And so:
M∑
i=1

Pairτ (µ, ai − t) =
M∑
i=1

Pai

B∑
l=0

tl

[
(−1)l

B∑
k=l

bkC
l
kai

k−l
]

=
B∑
l=0

tl

[
M∑
i=1

Pai(−1)l
B∑
k=l

bkC
l
kai

k−l
]

So we find a polynomial of degree B and its coefficients are calculated with the previous
equations (the case of piecewise polynomial calculation follows the same process). For equa-
tion 5.4, case REL, one has:

69

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

Un(µ, t) =
∫ ∞
−∞

Pµ(t′ − t) [rt(µ, t) + rt′(µ, t′) + rτ (µ, t′ − t) + Vn(s′µ, t
′)
]
dt′

= rt(µ, t)
(∫ ∞
−∞

Pµ(t′ − t)dt′
)

+
∫ ∞
−∞

Pµ(t′ − t)rt′(µ, t′)dt′+∫ ∞
−∞

Pµ(t′ − t)rτ (µ, t′ − t)dt′ +
∫ ∞
−∞

Pµ(t′ − t)Vn(, s′µ, t
′)dt′

= rt(µ, t) + (rt′ ∗ Sµ) (t) + (rτ ∗ Sµ)(0) + (Vn ∗ Sµ)(t)

= rt(µ, t) +
M∑
i=1

Pdi
(
rt′(µ, t+ di) + rτ (µ, di) + Vn(s′µ, t+ di)

)
The first term is a known polynomial of degree B and the third term is constant. The

second and fourth terms can be found by replacing the (bi)0≤i≤B by the coefficients of rτ or
Vn (the calculation is the same as in the previous case):

M∑
i=1

Pdirt′(µ, t+ di) =
B∑
l=0

tl

[
M∑
i=1

Pdi

B∑
k=l

bkC
l
kdi

k−l
]

Hence, one can easily calculate Un(µ, t)’s B + 1 coefficients. The above calculation has
been done for a single interval definition of the ri functions; in the general case of piecewise
defined functions, adapting this calculation is just a matter of shifting the definition intervals
of ri’s pieces by ai or di in order to find the new intervals of Un and the process is the same.

Let us move on to equation 5.3. A first step is necessary to find all definition intervals
for the Qn functions. Let us write αi and βi the respective bounds of L and Un’s definition
intervals. We order the αi and βi by increasing order. On each of these new intervals, since
L is constant, Qn is simply obtained by multiplying the coefficients of Un by L’s value. This
provides us with the B coefficients of Qn(s, t, a).

Qn(s, t, a1)

Qn(s, t, a2)

Qn(s, t, a3)

Qn

t

Figure 6.2: Illustrating the construction of V

Let us recall equation 5.2:

V n(s, t) = max
a∈A

Qn(s, t, a)

Solving this equation consists in searching for the intersections of polynomials. Let us
consider a given s and write am = argmax

a
Qn(s, 0, a). We will iteratively find the max

70

6.2. Exact calculation of Bellman backups

function for all t as illustrated on figure 6.2 and on algorithm 6.1. We find first the first
intersection of Qn(s, t, am) with the Qn function of another action a. This intersection is lo-
cated at the smallest root of the Qn(s, t, am)−Qn(s, t, a) polynomial which is of degree B ≤ 4.

Thus this root’s calculation is an exact operation on the polynomials’ coefficients. We
need to make sure that the considered point is a real intersection and not a tangent point by
verifying the sign change around the intersection. Now we redefine am, store the found Qn in
V n and move on to the next intersection. This yields a new degree B piecewise polynomial
function for V n(s, t).

Algorithm 6.1: Assembling V from the Q functions
asup ← argmax

a
Qn(s, 0, a)

V n(s, t)← Qn(s, t, asup)
t0 ← 0
tinter ← 0
while tinter 6=∞ do

tinter ←∞
for a ∈ A \ {asup} do

tnew ← first root of Qn(s, t, asup)−Qn(s, t, a) inside the interval [t0, tinter]
(if there are no roots in]t0, tinter], then tnew ←∞)
if tnew < tinter and Qn(s, t, asup)−Qn(s, t, a) changes sign in tnew then

an ← a
tinter ← tnew

V n(s, t)|[t0,tinter]
← Qn(s, t, asup)

asup ← an
t0 ← tinter

Algorithm 6.1 makes the assumption that the Q functions are polynomial. In the
general case of piecewise polynomial functions, we use algorithm 6.2 which takes
the possible discontinuities into account.

On top of presenting the complete method for constructing V and the corresponding π
policy, algorithm 6.2 is a good illustration of where the algorithmic difficulties of dealing
with piecewise polynomial functions are.

In algorithm 6.2, we extend the notion of dominating action. An action is said to be
dominating in s at t if its Q-value is the highest among the available actions in s. In case
of equality, the dominating action is the one which has the highest first non zero derivative.
If the equality persists, the actions are considered equivalent and one needs to introduce a
static ordering to break the ties.

Algorithm 6.2 computes several intersections of polynomials, incrementally finding the
dominating action and searching for the next intersection where another action becomes
dominant. Finding intersections of piecewise polynomial functions is equivalent to finding
the roots of the difference function. This difference function is called test(t) in algorithm
6.2.

71

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

Algorithm 6.2: Assembling V and π from piecewise polynomial Q functions
t0 = 0 /* Initialization */
tinter = 0
asup is the dominating∗ action in t0
asup new = asup
π[t0] = asup

∗∗

while tinter 6=∞ do /* While intersections are found */
tinter ←∞ /* Earliest intersection found so far after t0 */
for a ∈ A \ {asup} do

tcand = +∞ /* Candidate for earlier intersection */
test(t) = Q(s, t, a)−Q(s, t, asup)
t0 shifted = t0
I = definition interval of test to which t0 belongs
if test(t) is equal to zero on I then /* Case: equivalent actions in t0
*/

if I is the last definition interval of test(t) then
t0 shifted = +∞

else if the next interval of test starts before tinter then
Inext = the next interval
t0 shifted = Inext.lower bound()
if a dominates asup in t0 shifted then

tcand = t0 shifted
t0 shifted = +∞

else
t0 shifted = +∞

if t0 shifted ≤ tinter

then /* Case: Q functions intersection */
tcand = first point of sign change of test(t) in [t0 shifted, tinter] (+∞ if none)

tnew = +∞
if tcand < tinter then /* Successful candidate found */

tinter = tcand
asup new = a

else if tcand = tinter then /* Triple Intersection */
This is the case of three Q functions intersecting at tcand : a, asup and
asup new.
asup new dominates a so we only need to check if a dominates asup new.
if a dominates asup new in tcand then

tinter = tcand
asup new = a

if tinter 6= +∞ then
π[tinter] = asup new
asup = asup new
t0 = tinter

∗ dominating: highest value or, in the case of value equality, highest first non zero
derivative.
∗∗ π is defined on the interval starting in t0 as asup, this interval’s upper bound will be
provided by the next interval’s lower bound.

72

6.3. Prioritized sweeping

Finally, in equation 5.1, one searches for the solution of the parametric equation:

ft(t′) =
∫ t′

t
K(s, θ)dθ + V n(s, t′)

K is piecewise constant so
∫ t′

t
K(s, θ)dθ has the form K1(t′ −α1) +K2(α1 −α2) + . . .+

Kn(αp−1 − t). Hence:

dft(t′)
dt′

= K(s, t′) +
V n(s, t′)
dt′

Therefore solving dft(t′)
dt′ = 0 is equivalent to finding the roots of polynomials having

degree B − 1. We search for these roots on every interval defined by the intersection of
the definition domains of K and V n. Since the function can present discontinuities, one
has to add the boundaries of K and V n’s definition intervals. Among the points found, we
search for the one that maximizes ft(t′). This finally yields a function having the shape of
Ki(αi − t) + V n(s, t) or V n(s, t) providing the B coefficients of Vn(s, t).

At last, we have a complete method for exact analytical Bellman backups in the case
of TMDPs which verify equation 5.12. This method uses the properties of polynomials of
degree lower than 4 and of discrete distributions.

One can remark that the exact method can apply to the case of generalized degree B for
the reward model, as long as “A+C = −1”. Indeed, Sturm’s method or a standard Newton-
Raphson method allows us to approximate the intersections of polynomials in equation 5.2.
As long as A + C = −1, the overall degree of Vn remains stable throughout the iterations.
This is the first approximation made by the approximate TMDPpoly algorithm.

6.3 Prioritized sweeping

Even though the previous calculation provides the basis for an exact resolution, it might still
perform a lot of unwanted calculation for the optimization of TMDP policies. The standard
Value Iteration algorithm is a synchronous method which always builds a new value function
with respect to the previous one. [Bertsekas and Tsitsiklis, 1996] discuss the possibility of
performing the individual Bellman backups per state asynchronously, ie. to use the latest
state evaluations found so far, during the current iteration, to update the state at hand.
This idea is called Asynchronous Value Iteration, it was first introduced to allow parallel
computation in Value Iteration and was later exploited to improve convergence speed.

But even Asynchronous Value Iteration can take time to converge if the states are updated
in an inappropriate order. However, if one can find a good ordering of Bellman backups
per state, then the value function might converge quite quickly. This intuition draws on
the general result of Asynchronous Value Iteration, stating that ([Bertsekas and Tsitsiklis,
1996]):

As long as every state is chosen for Bellman backups infinitely often, the overall
value function converges to V ∗.

This means we can update the states in the order we want: as long as we visit them
infinitely often when the number of iterations tends to +∞, we are guaranteed to converge

73

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

to V ∗. The simplest version of asynchronous value iteration is the Gauss-Seidel method
which uses the most up-to-date value function for Bellman backups but does not have a
state selection strategy.

Prioritized sweeping was introduced in [Moore and Atkeson, 1993] and in [Peng and
Williams, 1993] based on the following idea. During the first iteration of Value Iteration, if
only one state in the state space provides a reward to the agent, then all Bellman backups in
states that are not direct parents of this “goal” state will leave the value function unchanged
and are unnecessary calculations. On the other hand, if the states in which we perform
Bellman backups are taken in an order which moves away from the goal state, convergence
of the value function will be much faster. Intuitively, this ordering operation corresponds to
sweeping through states in a prioritized manner.

Unfortunately, most problems do not have unique goal states. The reward model provides
a richer description than goal states alone by stating that some states with some actions pro-
vide positive or negative rewards. The strength of MDPs is to compute the best compromise
in terms of expected reward. Therefore, one needs to generalize this idea of “giving the
priority to certain states for Bellman backups” to the general case where no specific goals
can be defined. This is the basic idea of prioritized sweeping.

We summarize the prioritized sweeping algorithm as presented by [Moore and Atkeson,
1993] in algorithm 6.3. This algorithm maintains a list of states sorted by priority score. The
score of a state is directly determined by the previous iterations. Suppose state s′ is updated
and its value function varies by a quantity ∆V (s′) = |Vnew(s′)− Vold(s′)|. Then all Q-values
of transitions reaching s′ with probability P (s′|s, a) will be affected by this change and the
order of magnitude of their own change will be in Prio(s, a) = P (s′|s, a)∆V (s′). Whenever a
Q-value Q(s, a) receives a Prio(s, a) of more than a certain ε, the algorithm checks whether
s’s priority in the queue of states to update is higher than Prio(s). If not, the priority of
s is promoted to Prio(s, a) and the algorithm picks the next state in the queue in order to
update its value. This process is repeated as long as computation is allowed.

Algorithm 6.3: Prioritized Sweeping
Promote sinit to the top of the priority queue
while priority queue not empty do

Remove the top state from the priority queue. Call it s′. Set Prio(s′) = 0.

Update V (s′) = max
a∈A

{
r(s′, a′) + γ

∑
s′′∈S

P (s′′|s′, a′)V (s′′)
}

Calculate Bellman error ∆V (s′) = |V (s′)− Vold(s′)|
foreach (s, a) ∈ predecessors(s′) do

Prio(s, a) = P (s′|s, a)∆V (s′)
if Prio(s, a) > ε and Prio(s, a) > Prio(s) then

Insert s in the priority queue with Prio(s) = Prio(s, a)

[Andre et al., 1998] and [Dearden, 2001] generalize this method to compact model repre-
sentations as Dynamic Bayesian Networks ([Dean and Kanazawa, 1990]).

Concerning algorithm 6.3, [Moore and Atkeson, 1993] specify that prioritized sweeping is
a heuristic algorithm and provide experimental arguments proving convergence and efficiency
of the algorithm. Graphically, one can check that prioritized sweeping will focus on states

74

6.3. Prioritized sweeping

that need updates in order to let them converge first, before moving on to their predecessors.
Prioritized Sweeping can eventually reach a given state s provided that the sinit used for the
algorithm is reachable from s. One can note that, on top of the heuristic sweeping method,
Prioritized Sweeping can make use of a carefully chosen heuristic for the initial V (s). [Moore
and Atkeson, 1993] use an optimistic heuristic adapted from [Kaelbling, 1990].

The version of prioritized sweeping we implemented is directly inspired from algorithm
6.3. We introduced the following modifications and improvements in order to adapt to the
framework of TMDPs:

• Bellman backups. Since we basically want to perform Bellman backups in the dis-
crete states (for all possible times in [0, T]) by applying equations 5.1 to 5.4, we need to
avoid unnecessary calculations in the backup phase itself. In algorithm 6.3, the backup
in state s′ was only a matter of sums and multiplications of real numbers. With
TMDPs, as illustrated at the beginning of this chapter, it implies polynomial convolu-
tion, root finding, multiplication, etc., hence we wish to do as little of these operations
as possible. For this purpose, we slightly modify the backup phase by noting that, in
algorithm 6.3, when we calculate Prio(s, a), we actually calculate Q(s, a)−Qold(s, a).
So the next Bellman backup using (s, a) actually performs this same calculation of
Q(s, a) a second time. Based on this remark, we decide to automatically update all
Q-values for the predecessors of s′ whenever V (s′) is updated. Then we determine
the new priority of all predecessors s and move on. This way, performing a Bellman
backup in s is only a matter of solving equations 5.1 and 5.2 without recalculating
the Q(s, t, a) — these Q functions were automatically updated after previous Bellman
backups because they were needed to calculate the priorities anyway.

• Priorities calculation. Since we calculate V (s, t) value functions instead of V (s),
we need to adapt the way Prio(s, a) is calculated. Instead of using ∆V (s′, t) =
V (s′, t) − Vold(s′, t), we directly compute ∆Q(s, t, a) = Q(s, t, a) − Qold(s, t, a) and
set Prio(s, a) = ‖∆Q(s, t, a)‖t∈[0,T],∞. This way, we avoid calculating an extra con-
volution (between Pµ and ∆V). This pushes our prioritized sweeping implementation
to focus on discrete states for which the temporal part of the value function has not
fully converged yet. Using an L2 norm for instance would yield a different behaviour.
An interesting option would also be to use a t-weighted or biased norm1 such as the
quantity ‖w(t) ·∆Q(s, t, a)‖ — w(t) being an increasing positive function of time —,
therefore encouraging convergence in the states that have both the largest amplitude
of variation between updates and the latest variation with respect to t. This might
take advantage of causality properties to accelerate convergence.

• Priority queue initialization. As always, “there is nothing like a good initializa-
tion”. In the case of prioritized sweeping, initializing the priority queue corresponds to
inserting prior knowledge on the states that will yield the largest Bellman error during
the first sweep. In order to initialize the algorithm, we can distinguish two classes of
problems:

– Unstationary Stochastic Shortest Path (USSP) problems. This problem
class presents the important feature of having absorbing discrete states which
correspond to the goals. Solving a USSP corresponds to finding the cost minimiz-
ing strategy from any state to a goal. For these problems, a good initialization
of the priority queue is provided by performing a Bellman backup in all parent
transitions of the goal states.

1Actually, this quantity might not be a norm anymore.

75

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

– General TMDPs. This is the general class of problems without any defined
goal state. In this case a simple value iteration through the whole state space
might provide a good set of priorities for the states. One can also perform this
iteration approximately by using ‖V (s, t)‖∞,t∈[0,T] instead of V (s, t). It is however
important to note that if rewards are distributed all over the discrete state space,
then convergence will be hard to accelerate anyway since all priorities will be
almost equivalent. This is the worse case for prioritized sweeping, independently
from the TMDP formalism. In other words, prioritized sweeping propagates the
“reward information” through the state space by focusing the propagation on
crucial states. If the rewards are distributed in the discrete state space, then the
information needs to be propagated from all reward-providing states and to all
other states with similar probabilities and the speed-up due to prioritized sweeping
is lost due to the problem’s distributed structure.

• Value function initialization. Since TMDPs are defined with a total reward cri-
terion, the heuristic of [Moore and Atkeson, 1993] is not usable “as is” because it
requires γ < 1. One option is to adapt it by using an optimistic heuristic equal to the
maximum sum of rewards available in the problem at hand (or an upper bound) for
any transition which has never been tried. This sum must be finite, else it means the
total reward criterion does not exist. It is generally finite because all states (s, t = T)
are either absorbing states or yield a null long-term reward (see the definition of the
pseudo-horizon in section 2.3 and the discussion about convergence of the total reward
criterion in section 4.5.2). As identified by [Sutton and Barto, 1998], defining such a
heuristic corresponds to a “planning to explore” behaviour caused by the optimism of
the heuristic.

• Avoiding premature stopping. Suppose that during the very first update of V (s, t)
in state s the initial guess Vold(s, t) due to the heuristic is rather close to the updated
V (s, t). This can lead to ∆V (s) < ε and the consequence is that all s’s parent states
might never enter the queue while the initial guess might be completely erroneous for
them. This “good estimation bottleneck” is due to the fact that the initial heuristic is
not a value function, ie. is not the solution of a V = LπV equation. An easy way of
avoiding such problems is to perform a Bellman backup in every state of the problem
whenever the priority queue becomes empty. This unprioritized sweeping through the
state space yields a new full set of priorities, thus guaranteeing that all states are visited
at least once and restarting the algorithm in the case of “good estimation bottlenecks”.
Another option is to use an easily computable initial value function really corresponding
to a default policy, however, this option looses the advantage of defining a heuristic.

One can note that prioritized sweeping is an approximate value iteration scheme with
the approximation error on the value function being bounded by ε. We can let the algorithm
tend to the exact value iteration behaviour by decreasing the ε parameter as the number of
iterations increase. This is however not always necessary since the optimal policy can be
found with an inexact value function. The prioritized sweeping algorithm applied to TMDPs
is presented on algorithm 6.4.

Algorithm 6.4 uses the BellmanUpdate() and BellmanBackup() routines which respectively
compute the results of equations 5.4-5.3 and 5.2-5.1. The UnprioritizedVI() routine performs a
standard unprioritized value iteration pass and updates both the V and Q functions and the
priority queue. One can also note that we do not mention outcomes anymore and integrate
them into the transitions for presentation clarity. Hence, updating a transition means updat-
ing first all its outcomes’ U -functions before updating Q(s, t, a) and calculating Prio(s, a).

76

6.4. Approximate TMDP optimization

Algorithm 6.4: Prioritized Sweeping for TMDPs
Init: V ← h, priority queue← UnprioritizedVI(), continue = true.
while continue = true do

while priority queue 6= ∅ do
Remove the top state from priority queue. Call it s′

V (s′, t).BellmanBackup() /* equations 5.2 and 5.1 */
foreach (s, a) ∈ predecessors(s′) do

Q(s, t, a).BellmanUpdate() /* equations 5.4 and 5.3 */
Prio(s, a) = ‖Q(s, t, a)−Qold(s, t, a)‖t∈[0,T],∞
if Prio(s, a) > ε and Prio(s, a) > Prio(s) then

Insert s in priority queue with Prio(s) = Prio(s, a)

priority queue← UnprioritizedVI()
if max priority(priority queue) < ε then

Either take a smaller ε or set continue = false.

Finally, the last pass of value iteration used to avoid premature stopping is also used to com-
pute the final policy. If continue is set to false, then the output policy is the one calculated
during this last unprioritized value iteration pass.

Similarly to the calculation reduction strategy in the Bellman backups, which avoided
calculating the Q-values twice, we can choose to push this idea further if we are ready to
accept a little bit of approximation. During the BellmanBackup() routine, two main steps are
performed. The first one deals with comparing all the Q-values in order to find the overall V
function. The second step deals with finding the optimal dawdling time. For the first step,
we solve:

V n(s, t) = max
a∈A

Qn(s, t, a) (6.2)

And thus we have:

∀(s, a) ∈ S ×A, V n(s, t) ≥ Qn(s, t, a)

If we remember the Prio(s, a) calculated during the last update of Q(s, a), then we can
decide to consider that the Q-values with priority less than ε have not changed significantly
and thus write:

∀(s, a) ∈ S ×A such that Prio(s, a) < ε, V n(s, t) ≥ Qn+1(s, t, a)

Consequently, when solving equation 6.2, instead of comparing |As| Q-values alltogether,
we only compare a set of p + 1 functions where p is the number of transitions, starting in
s, that received a priority higher than ε. Namely, this set of functions contains the latest
V (s, t) and the Q-values which have a priority greater than ε. This implies accepting to have
an approximation of ε on the Q values, hence on the value function, and finally, to obtain
an ε-optimal policy.

6.4 Approximate TMDP optimization

The last section presented the general Prioritized Sweeping algorithm we introduced in order
to solve TMDPs when the exact resolution of the optimality equations is possible. However,

77

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

the general case of piecewise polynomial representations does not allow for such a resolution
because equation 5.12 is usually not verified. Moreover, in practice, even the exact resolution
scheme suffers from a very quick multiplication of V (s, t)’s number of separate definition
intervals. We introduce an intermediate approximation step in order to project the result
of a Bellman backup back into a space of polynomials which have a bounded degree and a
limited number of definition intervals. The challenge is to design an approximation operator
which guarantees an L∞-bounded approximation error so that we can use the results of
Approximate Value Iteration. In this section, we first recall some results of Approximate
Value Iteration (AVI) which help study the convergence and ε-optimality of our algorithm,
then we present the alternatives we tested for the approximation operator.

6.4.1 Approximate Value Iteration

Let L be the standard dynamic programming operator and F(S,R) be the set of functions
from S to R. Let Ap be an approximation operator projecting a function from F(S,R) into
a subspace of F(S,R). Approximate Value Iteration (AVI) is the algorithm which results
from the successive application of the L̃ = Ap◦L operator to an initial value function. Some
general results are available for AVI, we summarize them below and prove some of them.

Let us write Un the sequence of value functions obtained with AVI and Vn the sequence
of value functions one would obtain with standard Value Iteration. We also write V ∗ the
MDP’s optimal value function; V ∗ is the limit of the (Vn)n∈N sequence. Finally, we also have
V0 = U0. One has:

Un = L̃n(U0) = (Ap ◦ L)n(U0) (6.3)

We suppose that one can bound the approximation error in supremum norm as in equation
6.4. Calculating the supremum norm of a piecewise polynomial function over an given interval
is a rather easy calculation so guaranteeing this bound won’t be a problem for our algorithms.

∃ε ∈ R+ / ∀f ∈ F(S,R), ‖Ap(f)− f‖∞ ≤ ε (6.4)

The first important result about AVI is that:

In general, Approximate Value Iteration does not converge.

However, we can prove that the value function tends to reach the neighbourhood of V ∗.

[Bertsekas and Tsitsiklis, 1996] prove that as the number of iterations tend to +∞,
the Un functions belong to the neighbourhood of V ∗:

V ∗ − ε

1− γ ≤ lim inf
n→∞ Un ≤ lim sup

n→∞
Un ≤ V ∗ +

ε

1− γ (6.5)

Proof. Because of equation 6.4, one has:

LU0 − ε ≤ U1 ≤ LU0 + ε

So we can write that:

L(LU0 − ε) ≤ LU1 ≤ L(LU0 + ε)

L2U0 − γε ≤ LU1 ≤ L2U0 + γε

78

6.4. Approximate TMDP optimization

And, with equation 6.4 again:

LU1 − ε ≤ U2 ≤ LU1 + ε

So we have:
L2U0 − (1 + γ)ε ≤ U2 ≤ L2U0 + (1 + γ)ε

By induction, we obtain:

LnU0 − (1 + γ + . . .+ γn−1)ε ≤ Un ≤ LnU0 + (1 + γ + . . .+ γn−1)ε

Since there is no convergence guarantee on the (Un)n∈N sequence one cannot write its limits,
but we can still take its lim inf and lim sup, thus:

V ∗ − ε

1− γ ≤ lim inf
n→∞ Un ≤ lim sup

n→∞
Un ≤ V ∗ +

ε

1− γ

If our approximation is such that ‖Ap(f)‖∞ ≤ ‖f‖∞, then the previous equation turns
to:

V ∗ − ε

1− γ ≤ lim inf
n→∞ Un ≤ lim sup

n→∞
Un ≤ V ∗ (6.6)

Then, the interesting part is to evaluate the performance of a policy obtained with AVI.

If πn is the greedy policy with respect to the value function Un, then its value
function V πn obeys equation 6.7.

‖V ∗ − V πn‖∞ ≤ 2γ
1− γ ‖V

∗ − Un‖∞ (6.7)

And so:
lim sup
n→∞

‖V ∗ − V πn‖∞ ≤ 2γε
(1− γ)2

(6.8)

Proof. We have LV ∗ = V ∗ (by definition of L and V ∗), LπnV πn = V πn (by definition of Lπn
and V πn) and LπnUn = LUn (because πn is greedy with respect to Un). Equation 6.7 is a
simple consequence of the inequality:

‖V ∗ − V πn‖∞ = ‖LV ∗ − LπnUn + LπnUn − LπnV ∗ + LπnV ∗ − LπnV πn‖∞
≤ ‖LV ∗ − LπnUn‖∞ + ‖LπnUn − LπnV ∗‖∞ + ‖LπnV ∗ − LπnV πn‖∞
≤ γ‖V ∗ − Un‖∞ + γ‖V ∗ − Un‖∞ + γ‖V ∗ − V πn‖∞

And so:
‖V ∗ − V πn‖∞ ≤ 2γ

1− γ ‖V
∗ − Un‖∞

The second inequality comes from equation 6.4.

It is also possible to derive incremental bounds on the Bellman residual by using results
from [Williams and Baird, 1993]:

If πn is the greedy policy with respect to the value function Un, then its value
function V πn obeys equation 6.9.

‖V ∗ − V πn‖∞ ≤ 2
1− γ ‖LUn − Un‖∞ (6.9)

79

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

For the case of piecewise polynomial approximation, we can easily calculate the L∞
bounds by performing analytical calculations. However, in most approximation schemes, the
approximate value function is usually obtained by minimizing an Lp-norm criterion and the
previous results do not hold anymore. [Munos, 2007] extends the previous results to the case
of weighted Lp-norms.

Unfortunately, TMDPs are defined with a total reward criterion so the theoretical bounds
provided above cannot be used. Nevertheless, [Bertsekas and Tsitsiklis, 1996] argue that
for stochastic shortest path problems and good approximation architectures, the final policy
obtained by AVI is close to the optimal strategy because of the approximation’s good quality.
They show it is relatively easy to adapt the proof of equation 6.5 to the case of a finite number
of steps, hence illustrating this intuition of convergence and ε-optimality.

6.4.2 Polynomial degree reduction and interval number minimization

The approximation scheme we design aims at keeping the value function in the same function
space. Since equation 5.4 implies calculating convolutions of Sµ with r and with Vn, it makes
sense to try to keep the degree of Vn equal to the one of r. In other words, it makes sense to
use PB as the projection space for our Ap operator.

On the other hand, since we have the — approximate — tools to compute roots and
convolutions for polynomials of degree higher than 5, our main goal in using the Ap approx-
imator is to keep the polynomials’ degree low enough in order to avoid dealing with very
high order polynomials. This means we actually don’t need to perform this projection at
every Bellman backup. As long as we consider it acceptable to let the polynomials’ degree
increase, we can perform convolutions and root searching for polynomials of degree higher
than B. When the degree of our polynomials reach a certain threshold, then we can decide
to use our approximation operator in order to project these polynomials back into a lower
degree PM space.

The intuitive idea behind the lazy approach presented in the last paragraph relies on
the fact that high order polynomials can describe functions with lots of inflexions and vari-
ations while lesser degree polynomials do not have such an expressive power. Hence, when
we reduce the degree of our piecewise polynomial functions, we can expect the number of
definition intervals to increase. This trade-off between polynomial degree and number of
definition intervals seems unavoidable and the previous method for lazy projection aims at
providing a flexible approach to the approximate resolution.

Finally, the approximation problem can be stated as follows. For all function f ∈ PK ,
we search for a function Ap(f) = f̃ , f̃ ∈ PM such that ‖f − f̃‖∞ ≤ ε. This constraint defines
a set of candidate functions. Among these functions, we can define a criterion to optimize.
Optimizing the ‖f − f̃‖2 quantity seems to be a bad idea since an obvious solution to the
problem stated in equations 6.10 is found with a piecewise polynomial function having an
infinite number of definition intervals.

min
f∈PM

‖f −Ap(f)‖2
with ‖f −Ap(f)‖∞ ≤ ε

(6.10)

We can chose to minimise the number of intervals, considering that ε is small enough
to insure that our approximation fits the original function. This defines the optimization
problem 6.11.

80

6.4. Approximate TMDP optimization

min
f∈PM

{intervals number in f}
with ‖f −Ap(f)‖∞ ≤ ε

(6.11)

The solution to problem 6.11 need not be unique so we might want to use a hybrid
criterion in the end. We write PM,q the subset of PM containing elements having exactly q
definition intervals. This yields problem 6.12.

min
f∈PM,q

‖f −Ap(f)‖2
with q = arg min

p∈N
{PM,p / PM,p ∩ S 6= ∅}

and S = {f ∈ PM / ‖f −Ap(f)‖∞ ≤ ε}
(6.12)

While this last formulation seems to be an acceptable expression of our approximator’s
requirements, computing its optimal solution can require a lot of calculation. The only
crucial rule to respect is the constraint ‖f − Ap(f)‖∞ ≤ ε. We introduce the suboptimal
approximation method of algorithm 6.5 which returns a piecewise polynomial function be-
longing to PM,q′ , with q′ ≥ q.

Algorithm 6.5: Polynomial approximation
Main loop:

input: pin /* the pwp to approximate */
input: M /* the approximation’s degree */
input: ε /* the tolerance on the L∞ error bound */
pout = pin
I = pout.intervals() /* The set of intervals of p */
for I ∈ I do /* Approximating the function */

replace f = pout.polynomial(I) by f ′ =approx(f,M, I)
return pout

approx(f,M, I):
B = {I .lower(), I .upper()} /* The new set of bounds inside I */
e = ε+ 1 /* the error term */
while e > ε do

f ′ =piecewise interpolation(B,M, f)
e = ‖f ′ − f‖I,∞
if e > ε then /* Check the constraint */

xworse = argsup
x∈I

|f ′(x)− f(x)|
B.insert(xworse)

return f ’

Notations:
pwp: piecewise polynomial function
‖g‖I,∞ = sup

x∈I
|g(x)|

piecewise interpolation(B,M, f) computes the pwp interpolation of f , in PM , on the
intervals defined by B

This algorithm computes a piecewise polynomial approximation pout of pin, which has
degree M and verifies ‖pin − pout‖∞ ≤ ε. The computation is performed by incremental
cutting of each definition interval in order to simplify the portion to approximate. This way,

81

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

all local approximations eventually become bounded by ε. The number of intervals in pout
is not minimal but this algorithm remains a good compromise in terms of calculation time.

The approx method of algorithm 6.5 is illustrated on figure 6.3.

I

I1 I2

m
ax

er
ro

r
>

ǫ

pin

first attempt
second attempt

Figure 6.3: Illustrating algorithm 6.5

Three improvements to the approx method are immediately possible.

1. It is possible to incrementally check that the constraint is not violated and to refine
the discretization in several points without having to go through several iterations of
the “while” loop.

2. Depending on the value of the degree M , some good heuristics can be used for finding
the xworse points. For example, if we use polynomials of degree 3 (cubic splines for
instance) then we know that these polynomials will provide good interpolation capabil-
ities on intervals where pin only has one inflexion. Finding the inflexions of pin already
yields a good partitioning of I for degree 3 interpolations.

3. If interpolation itself, given the set of bounds, is costless (for cubic or linear interpola-
tion for instance), then we can further minimize the number of definition intervals by
popping bounds out of the B set whenever we find a new cutting point which is before
the bounds in B.

4. Finally, it is possible to include a last parsing of the final interval cutting in order to
merge any two posterior definition intervals over which the polynomials are close. This
merging should still respect the ‖pin − pout‖∞ ≤ ε constraint.

This last point appears crucial from a practical point of view. Indeed, experiments have
shown that as the number of iterations grows, the number of definition intervals increases
dramatically. While this might be necessary to describe the subtle variations of the value
functions, it sometimes also results in very small successive intervals where the function
is quasi-constant with very close successive values. On top of being unnecessarily detailed
knowledge, this aspect handicaps the optimization efficiency, so it seems important for our

82

6.4. Approximate TMDP optimization

Algorithm 6.6: TMDPpoly polynomial approximation

input: pin /* the pwp to approximate */
input: M /* the approximation’s degree */
input: ε /* the tolerance on the L∞ error bound */
input: [l, u] /* the approximation interval */
pout = pin
t0 = l
continue = true
f , f ′, g, gtemp are polynomials
while continue = true do

I = interval to which t0 belongs
f = pout.polynomial(I)
Refinement phase: /* refining the bounds to fit the function */

if f .degree() > M then
Erase the interval I in pout.
refine = true
tup = I .upper()
while refine = true do

f ′ =interpolation(f,M, t0, tup)
if ‖f − f ′‖[t0,tup] > ε then

tworse = argsup
t∈I

|f ′(t)− f(t)|
tup = tworse

else if ‖f − f ′‖[t0,tup] ≤ ε and tup 6= I .upper() then
Set pout to f ′ on [t0, tup[.
t0 = tup
tup = I .upper()

else
refine = false

Simplification phase: /* swallowing successive intervals into one */
I = interval to which t0 belongs
Inext = I .next interval()
ttemp = Inext.upper()
g = pout.polynomial(I)
gtemp(t) =interpolation(pout,M, t0, ttemp)
while ‖pout − gtemp‖[t0,tup],∞ ≤ ε do

g = gtemp
tup = ttemp
Inext = Inext.next interval()
tup = Inext.upper()
gtemp(t) =interpolation(pout,M, t0, tup)

Replace all polynomials of pout over [t0, tup[by g.
Stopping condition:
t0 = tup
if t0 ≥ u then continue = false

83

Chapter 6. The TMDPpoly algorithm: solving generalized TMDPs

approximation method to be able to detect and merge all these small intervals together while
still respecting the ‖pin − pout‖∞ ≤ ε constraint. Once again, polynomial interpolation is
particularly suited and efficient for this kind of approximation.

The final approximation method we used is presented in detail in algorithm 6.6. One can
easily verify that this method provides an L∞ bounded approximation error. In practice, this
method proved to be efficient in terms of calculation time and interval number reduction.

6.5 The TMDPpoly algorithm

Finally, we have introduced all the bricks to build the approximate TMDPpoly algo-
rithm. Let us summarize them here.
• Exact calculation of Qn+1. Using the exact convolution method presented

in appendix A we perform analytical computation of Un+1 and Qn+1 from Vn,
using equations 5.3 and 5.4.

• Polynomial degree reduction. When the polynomial’s degree become
larger than a certain threshold we apply algorithm 6.6 to return in PB space
with as little definition intervals as possible. This degree reduction guarantees
that the approximation lies within an ε bound of the original function. This
bound is calculated with respect to the supremum norm, thus guaranteeing
the AVI properties presented in section 6.4.

• Approximate calculation of Vn+1. Using equations 5.1 and 5.2 we compute
Vn+1 from Qn+1. This calculation is approximate because of the root finding
phase when searching for the maximum over all Qn+1.

• Prioritized sweeping. We reuse the same prioritized sweeping method as
was presented in algorithm 6.4 but now the BellmanBackup and BellmanUpdate
routines make use of the three previous points.

The algorithm presentation itself does not differ from algorithm 6.4 so we refer the reader
to previous paragraphs for details.

84

7
Implementation and experimental evaluation of the TMDPpoly

algorithm

This chapter presents two instances of problems solved using the TMDPpoly planner
implemented from the TMDPpoly algorithm. The first problem is an adaptation
from the standard Mars rover benchmark, with action result uncertainty and a
continuous time resource, as presented in [Bresina et al., 2002]. We derive several
variants on the same problem. The second illustrates a different interpretation of
TMDPs: it is a surveillance mission planning problem where the wait action is no
longer a passive action, on the contrary, it is the only action providing rewards.
This second example generalizes TMDPs to the case of other continuous actions
than wait and presents a different point of view on the possible applications of
TMDPs.

7.1 Implementation choices

The TMDPpoly planner has been implemented in C++ as a general library of functions
permitting the definition, modification and optimization of TMDP problems. Details on the
TMDPpoly library’s current implementation are available at http://emmanuel.rachelson.
free.fr/en/software/.

Three layers of functionalities have been developed independently to build the TMDPpoly
planner:

• First, the POLYTOOLS library has been developed. Its goal is to allow the definition
of polynomial and piecewise polynomial functions and to provide built-in methods for
all operations on these polynomials. These operations range from simple addition or
multiplication to complex operations such as:

– Root finding (exact and approximate methods)

– Variations analysis

– Convolution of piecewise polynomial functions

– The approximation scheme presented at the end of the previous chapter

The POLYTOOLS library provides a simple and rich interface which manages the low-
level memory allocation and the complete operations for piecewise polynomial functions
calculus. The algorithmic part of POLYTOOLS is presented in appendix A and the

85

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

latest implementation itself is available at http://emmanuel.rachelson.free.fr/en/
software.

• Then, using the POLYTOOLS layer, the TMDPpoly library itself defines an interface
to declare generalized TMDP problems and provides optimization functions that im-
plement both Value Iteration and the TMDPpoly algorithm to solve them. In order
to allow the use of discrete distributions as well as piecewise polynomial ones, the
TMDPpoly library also defines a “discrete pdf” class with compatibility operators for
operations with polynomials (for convolution for instance).

• Finally, for the case of the gridworld UAV patrol problem example, the provided graph-
ical interface encapsulates some functions of the TMDPpoly library to build a visual-
ization interface for the optimization operations and result.

Compared to the algorithms presented in the previous chapter, the TMDPpoly library
provides an exact implementation with the following choices:

• Approximation frequency. Since the approximation algorithm includes the interval
reduction method, it is applied to V (s) every time a state is updated.

• Approximation degree. In order to use the simplicity of linear regression, the approx-
imation method always projects the value function onto the space of piecewise linear
functions. It is a deliberate choice made for simplicity; using cubic splines (or even
other splines) might provide better interpolation capacities with even less definition
intervals but it has not been tested yet.

The following sections present the results obtained on different examples. All experiments
were ran on the same computer. This computer’s configuration is briefly given in the next
table:

Processor AMD Athlon 3200+ (single core, 1.8 GHz)
Memory 1019 MB
OS GNU/Linux Ubuntu version 8.04
C/C++ compiler gcc 4.2.4

7.2 Simple examples and results with the TMDPpoly planner

7.2.1 Two simple test examples: the three states problem

The goal of these two problems is only to illustrate how the basic functions of TMDPpoly
work and to introduce the metrics we define for evaluating the TMDPpoly results.

Problem 1 is a loopless three states problem illustrated on figure 7.1. State s3 is an
absorbing state and each action has a single outcome, so actions and outcomes can be
directly identified (ai ↔ µi) and actions considered deterministic with respect to the discrete
part of the state. This is expressed by:

∀i such that ai is applicable in s, L(µi|s, t, ai) = 1

All outcomes have parameter Tµ = REL, and the duration distributions are defined as:

• Pµ1(τ) = δ1(τ)

86

7.2. Simple examples and results with the TMDPpoly planner

s1 a1

a2

µ1

µ2

s2 a3
µ3 s3

Figure 7.1: 3 states problem - 1st version

• Pµ2(τ) = δ3(τ)

• Pµ3(τ) = δ1(τ)

So all outcomes have deterministic durations. Finally, the reward models are given by:

rt(µ2, t) = 2 · 1[45,75](t)

rt′(µ3, t
′) = 1

All other rewards are equal to zero.

Finally this is a very simple deterministic problem with time-dependent rewards. We can
set the pseudo-horizon to 100 for example but it is not a crucial variable since we have an
absorbing terminal state (thus making the total reward criterion converge anyway).

Problem 2 is similar to problem 1 but the loopless structure is broken by a fourth action
that allows returning to s1 from s3 as illustrated on figure 7.2.

s1 a1

a2

µ1

µ2

s2 a3
µ3 s3

a4
µ4

Figure 7.2: 3 states problem - 2nd version

The duration of µ4 is given by: Pµ4(τ) = δ30(τ). So µ4 is a rather long transition com-
pared to the other outcomes.

The reward models are given by:

rt(µ2, t) = 4 · 1[50,75](t)

rt′(µ3, t
′) = 1[0,100](t

′)

rt(µ4, t) = −2 · 1[0,100](t)

So there is a penalty in undertaking action a4 (corresponding to outcome µ4) which can
only be compensated by the rewards of the other outcomes if they are available.

7.2.2 Optimisation results

For the first version of the three states problem, when the priority list is initialized with s3,
the algorithm converges in 4 iterations, updating the states in the order: s3, s1, s2, s1. More
specifically, the update priorities were:

87

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

s3 : ∞
s1 : 2
s2 : 1
s1 : 1

According to algorithm 6.4, after the first update, the value function of s3 is set to the
constant zero and the parent U and Q-functions are updated. These U functions correspond
to µ2 and µ3 thus letting the priorities 2 and 1 be assigned to s1 and s2 respectively. Then
the second update, occurring in s1, only updates s1’s value function since there are no parent
transitions. The highest (and only) priority of the priority queue at this step is then s2. Its
value function update propagates the priority 1 to s1 which is updated finally. During this
final update, it appears that during [0, 45] it is better to wait for the reward of µ2 than to
try µ1. The final value functions are presented on figure 7.3.

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

s3
s2
s1

Figure 7.3: Final value functions for the three states problem, first version

The associated policy found is:

s1 : [0; 45]→ wait
[45; 75]→ down
[75; 100]→ right

s2 : [0; 100]→ right
s3 : [0; 100]→ wait

The overall calculation time was smaller than 10−2 seconds.

Similarly, the second version of the three states problem converges in 5 iterations when
initialized with a null value function and an initial sweeping through the transitions to get
the initial priorities. The initial priorities are given by:

s1 : 4
s3 : 2
s2 : 1

And the a posteriori state ordering followed for optimization was:

88

7.2. Simple examples and results with the TMDPpoly planner

s1 : 4
s3 : 4
s2 : 2
s1 : 3
s3 : 1

This ordering is given in figure 7.4 as an example of what we shall use as a performance
profile in the next sections.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5

m
ax

 p
ri

or
ity

iteration number

Figure 7.4: Evolution of the maximum priorities for the three states problem, second version

This ordering illustrates the fact that priorities are not necessarily always decreasing.
One could expect them to follow a global decreasing trend: since they are related to Bell-
man’s error, they should converge to zero, but this convergence is not monotonous.

If we try to follow the update mechanism to understand how priorities can sometimes
increase, we can notice the following sequence of events. For simplicity of notation, we write
Qi the Q function associated with the action triggering outcome µi. This is possible since
there is only one outcome per action in this toy example. During the first sweep meant to
retrieve the initial priorities, s2 receives priority 1 because Q3 becomes equal to 1[0;99](t). But
as s3 is updated (second update), Q3 becomes equal to 3 ·1[0;44](t)+1[44,99](t). The ‖∆Q3‖∞
is equal to 2, thus assigning a new priority of 2 to s2. However, the cumulative variation
since the last value function update in s2, in L∞ norm, is equal to 3: the algorithm is blind
to such a change because Q3 has increased in two steps. Hence, when we update s2, its value
function becomes equal to Q3, and Q1 jumps from zero to 3 · 1[0;43](t) + 143;98(t), yielding a
‖∆Q1‖∞ of 3 and finally assigning priority 3 to s3, which corresponds in an increase in the
maximum priority of the queue.

Our update mechanism just keeps track of the largest variation of Q in a single update,
not of the cumulative variation, thus yielding priorities sometimes smaller than the actual
value function change they induce. When the value function is updated, this creates a priority
higher than the previous ones. This is the first reason for non-monotonicity of the priorities:

89

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

The priority mechanism keeps track of the largest ‖∆Q‖∞ in one iteration and
not the cumulative ‖∆Q‖∞ since the last update. Therefore, priorities sometimes
overestimate or underestimate the impact of value functions updates. This induces
the non-monotonous behavior of the priorities. It could be compensated by keeping
track of the Q functions just after a value function update.

Since priority propagation is a local mechanism, states are often updated soon after
receiving their high priorities. Thus, this breaking of monotonicity does not appear often
because there are few transition that receive their ‖∆Q1‖∞ in more than one time. More im-
portantly, this also illustrates why the priorities quickly drop again after these value functions
updates. This will be particularly visible in the rover and UAV examples.

The final value functions are presented on figure 7.5.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

s3
s2
s1

Figure 7.5: Final value functions for the three states problem, second version

The associated policy found is:

s1 : [0; 50]→ wait
[50; 75]→ down
[75; 100]→ right

s2 : [0; 100]→ right
s3 : [0; 45]→ up

[45, 100] wait

The overall calculation time was also smaller than 10−2 seconds.

If one changes slightly the problem in order to make the reward of µ1 accessible twice by
taking the loop through s3, then the policy changes accordingly. For example if we write:

rt(µ2, t) = 4 · 1[30,75](t)

Then the optimization finishes in 7 iterations, still in a computing time smaller than 10−2

seconds. The prioritized sweeping through the state space was:

90

7.2. Simple examples and results with the TMDPpoly planner

s1 : 4
s3 : 4
s2 : 2
s1 : 3
s3 : 2
s2 : 2
s1 : 2

The final value function is given on figure 7.6

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

s3
s2
s1

Figure 7.6: Final value functions for the three states problem, second version modified

The associated policy is:

s1 : [0; 30]→ wait
[30; 75]→ down
[75; 100]→ right

s2 : [0; 100]→ right
s3 : [0; 45]→ up

[45, 100] wait

These examples’ purpose was only to illustrate the general behaviour of the TMDPpoly
planner. The next sections analyze its performance on larger problems.

7.2.3 Metrics

The two following sections present the Mars rover and the UAV patrol domain. We use these
examples to illustrate the behavior of the TMDPpoly planner. More specifically, we evaluate:

• The performance graph: since priorities are related to Bellman error, we use them as
an approximate measure of performance of the global policy through the iterations.
This measure is only reliable if we are certain of the priority queue’s initialization.
This is the case since we use the automatic initialization procedure of section 6.3 for
the rover case and the list of rewards for the UAV.

91

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

• The expected reward: the problems at hand are not supposed to have a starting state in
particular. Since plotting all the state value functions might be a little cumbersome and
not relevant, we try to underline the final value function obtained for states that seem
relevant. In the UAV case, the graphical interface illustrates well the associated policy,
even though nothing replaces direct user evaluation by “playing” with the interface.

• Complexity: we plot the evolution of individual state updates duration in order to see
how the calculation time evolves as the functions become more complex. However, this
metric is implementation and machine dependent. So we also relate it to the number
of state updates before the priority queue becomes empty.

7.3 The Mars rover problem

7.3.1 Problem definition

Overview

The rover problem is inspired by and adapted from the International Planning Competition
“rover” domain and by the original Mars rover problem statement of [Bresina et al., 2002].

This domain describes the problem of mission planning for a rover over a full day on
Mars. The rover’s mission is to collect two rock samples from different sites and to take a
photo of a distant object. Available actions deal with recharging the batteries, taking the
photo, collecting the samples and moving from site to site. One can make the problem more
complex by adding possible transmissions with a remote station, on-board analysis actions,
memory management, etc. We will keep this first simple description of the problem for our
experiments since it seems rich enough to describe an interesting problem.

Previous work on the problem of planning the operations of the Mars rover tackled dif-
ferent aspects of the problem stated in [Bresina et al., 2002]. The complete rover domain, as
presented by [Bresina et al., 2002], involves dealing with contingencies, probabilities, contin-
uous variables, continuous time, concurrent actions, etc. [Bresina et al., 2002] lists a number
of algorithms, planners and approaches for this domain, highlighting their strengths and
weaknesses. Later work by [Mausam and Weld, 2007] addresses the question of dealing with
concurrent actions, synchronized on a discretized time, with duration uncertainties. [Feng
et al., 2004; Li and Littman, 2005] attacked the problem from the fully continuous point of
view, representing value functions as kd-trees. HAO* [Benazera et al., 2005] also attacked
the rover problem by addressing the question of hybrid state spaces and heuristic search and
pruning. While our algorithm is not designed to compete with the previous approaches as
a matter of performance, it provides a different alternative which could be combined, for
example, with the heuristic approach of HAO*, or with the action elimination scheme of
[Mausam and Weld, 2007] for dealing with larger action spaces.

Figure 7.7 illustrates the mission planning problem. The rover can navigate between
nodes labeled 1 to 6 which correspond to values of p, the position variable. Each movement
action has a certain success or failure probability: these actions can end up in the destination
of in the initial position. Similarly, movement durations and energy consumption are uncer-
tain. The labels attached to the edges of the navigation graph correspond to the average
travel duration for a successful move along the edge. The filled nodes correspond to sample
sites: sample 1 is available at position 5 and sample 2 at position 2. The dark gray areas are
obstacles to both navigation and vision while the light gray area is an obstacle to navigation

92

7.3. The Mars rover problem

only. Consequently, the photo can be taken from any of the nodes numbered 3 to 6. However,
this picture has different probabilities of being successful depending on the shooting site. The
rover has the on-board ability to roughly analyse the image in order to determine whether it
is good or not. So whenever the picture is taken, it can result in either a good image or a bad
one but there is no notion of ranking among images. Consequently, whenever a good image
has been shot, it is kept without further questioning. The preferred shooting site is position 6.

1

2

3

4

5

6
photo

4

5

12

3

5
5

5

5

Figure 7.7: Mars rover problem — mission presentation

We consider a day of length 70 time units and we suppose the goal is to finish the mission
before nightfall but this constraint is flexible and the mission does not really have to be com-
pleted in one day. After 70 time units, night falls and the rover switches to energy saving.
We consider e = 0 to be the lowest energy level corresponding to surviving during one night.
Hence, the mission can be restarted everyday from any state of the problem which implies
we are interested in the policy in every possible starting state.

Finally, depending on the time of day, lighting changes which affects the recharge ability
of the rover and the photography’s success probability.

The state variables we consider are summarized in table 7.1. They yield a hybrid state
space containing 1968 discrete states and one continuous variable. It can be interesting to
compare with a discrete problem generated using a unit discretization of time1: this fully
discrete problem has 139728 states. Some current algorithms for MDPs can deal with such
state space sizes — especially heuristic search algorithms and algorithms making use of
factored representations — but simple algorithms as Value Iteration over standard tabular
representations of this size take a long time converging.

One could object to this argument that, with a unit discretization of time, the resolution
takes exactly 71 value iterations because the problem is a finite horizon MDP with uncertain

1as presented in the next paragraphs, a unit discretization of time is the least necessary to roughly ap-
proximate the time-dependency introduced by the L and Pµ functions.

93

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

durations. Indeed, the comparison with the 139728 states problem is more valid for the
case of general continuous variables. Anyway, 71 iterations times 1968 states corresponds
to 139728 state value updates while we will see a little further that our prioritized sweeping
method finishes in about 35000 state function updates which might be an interesting trade-
off between calculation complexity and having continuous dynamics representations.

Our implementation of the TMDPpoly algorithm is rather straightforward and leaves a
lot of space to heuristic search improvements and better representations of the state space’s
discrete part, so it makes sense comparing the performance of Value Iteration or standard
Prioritized Sweeping on these large discrete problems and the performance of TMDPpoly on
the hybrid one.

Variable Description Domain
t time [0, 70]
e energy {0, 1, . . . , 39, 40}
p position {1, 2, 3, 4, 5, 6}
im1 image 1 taken {0, 1}
sa1 sample 1 collected {0, 1}
sa2 sample 2 collected {0, 1}

Table 7.1: Mars rover problem — state variables

The action space of the rover is described on table 7.2. The number of actions defined
in this table is 23 (if we don’t count the continuous wait action). However this number does
not really mean much since only few of these actions are available in each state. Therefore,
it is better to count the minimum and maximum number of actions available per state in
the problem to get an idea of the problem’s difficulty.

• Example of states that have the most available actions: p = 3; 6 ≤ e < 40; im1 = 0
↔ {move(3, 1),move(3, 2),move(3, 4),move(3, 5), take picture(3), recharge, wait}
• Example of states that have the least available actions: e = 0
↔ {recharge, wait}

move(p1, p2) movement from p1 to p2

take picture(p) takes the photo from position p

sample rock(p) collects a rock sample from position p

recharge fully charges the rover’s battery
wait(τ) waits for a future date t′ = t+ τ

Table 7.2: Mars rover problem — action space

Movement actions

Each movement action can result in six different outcomes:

• µ1 — movement success and short duration

• µ2 — movement failure and short duration

94

7.3. The Mars rover problem

• µ3 — movement success and average duration

• µ4 — movement failure and average duration

• µ5 — movement success and long duration

• µ6 — movement failure and long duration

One has, independently of the current state, time and destination state:

L(µ1) = 0.6
L(µ2) = 0.05
L(µ3) = 0.15
L(µ4) = 0.025
L(µ5) = 0.15
L(µ6) = 0.025

Destination state of outcome µ1 corresponds to the target position with an energy de-
crease corresponding to a short duration movement. The destination states of the other
outcomes can be described similarly.

The duration probability density functions have been implemented in five different ver-
sions, all bringing different complexity to the problem. These distribution are chosen so
as to match the average and standard deviation of a Gaussian distribution on movement
durations.

1. The first one uses piecewise polynomial probability density functions. More specifi-
cally, cubic splines, used to interpolate Gaussian distributions. An example of such
a distribution is plotted on figure 7.8. Some additional details on calculation of the
associated splines are given with the battery charge action description.

2. The second one only uses discrete distributions.

3. The third one uses quadratic splines yielding similar distributions to the ones of the
first version.

4. The fourth one uses piecewise linear functions corresponding to applying algorithm 6.6
to the first version’s distributions.

5. The fifth one uses only piecewise linear distributions, mainly “triangular” distributions.

We give an example of the two first versions on outcome µ3 of action move(1, 4) applied in
position p = 1. The piecewise polynomial version is plotted on figure 7.8.

Pµ3(τ) =1[11,12](τ) · (−2τ3 + 69τ2 − 792τ + 3025
)

+

1[12,13](τ) · (2τ3 − 75τ2 + 936τ − 3887
)

Pµ3(τ) = 0.25 · δ11.5(τ) + 0.5 · δ12(τ) + 0.25 · δ12.5(τ)

No reward is associated with movement actions.

There is an important caveat to mention here. POLYTOOLS is a rather complex set of
operations trying to combine knowledge about formal calculus, algorithmic efficiency and nu-
merical calculus stability. For example, the sequence of polynomials built for Sturm’s method

95

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 10.5 11 11.5 12 12.5 13 13.5 14

Figure 7.8: Duration probability of µ3

(see appendix A for details) implies performing an exact Euclidean division of polynomials
which is feasible in theory and easy to implement but which can imply a lot of numeri-
cal instability for ill-conditioned polynomials2. There are many examples of such technical
difficulties which are completely unrelated to the planning problem but constitute a major
obstacle to testing the TMDPpoly planner for higher order polynomials. Because of these
technical problems, only versions 2, 4 and 5 of the rover problem were actually solved using
our implementation. The other versions are readily available but POLYTOOLS still needs
some improvements and some fixing before they can be solved. This has another drawback:
it was not possible to evaluate the trade-off between polynomial degree and number of pieces
in the piecewise polynomial description because POLYTOOLS still has trouble with higher
degree polynomials. However, the simple comparison between discrete density functions and
piecewise linear ones already allows to draw some conclusions regarding the complexity on
the operations involved and the advantages/drawbacks of such modeling features.

Taking the picture

This action is only available in positions 3 to 6, when the energy resource is sufficient and
if a successful photo has not already been stored in memory. It can result in two different
outcomes, either the picture is good or it has to be re-shot. The probabilities of a successful
picture depend on the shooting location and on the time of day. They are illustrated on
figure 7.9.

In all cases, the energy decrease is 1. Similarly, the transition duration is deterministic
and has duration 1.

Finally, the reward for taking a good photo depends on the outcome’s end date and on

2polynomials having a very small coefficient of high degree and a very large constant coefficient

96

7.3. The Mars rover problem

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10 20 30 40 50 60 70

p=3
p=4 and 5

p=6

Figure 7.9: Probability of successful photo — L(µsuccess|s, t, take picture)

the shooting site:

rt′(µsuccess, p, t) =

4 if p = 3
5 if p = 4
4 if p = 5
7 if p = 6

Collecting the samples

Similarly to the picture action, this action is only available in positions 2 and 5, if the energy
level is high enough and if the sample corresponding to the current position has not been
collected yet. This action can result in a success or failure outcome; failure corresponding to
a failure in grabbing the right sample and storing it. The probability of successfully collect-
ing the sample is 0.7, regardless of the sampling site, the current state or the time of day.

Sampling duration can vary according to several possibilities in the grabbing scenario. It
results in the following duration distributions:

Pµsuccess(τ) = 0.2 · δ3(τ) + 0.6 · δ4(τ) + 0.2 · δ5(τ)
Pµfailure(τ) = 0.5 · δ2(τ) + 0.5 · δ3(τ)

The reward for collecting sample 1 is 5, and the reward for sample 2 is 3.

Charging the batteries

Charging the batteries is an all-or-nothing action which performs a full battery charge, re-
gardless of the initial energy level. However, the recharge duration depends on this initial
level and on the lighting (directly linked with the time of day). There are two recharging
speeds corresponding to two different outcomes: µ1 corresponds to slow charging and µ2 to
fast charging. If the recharge action is undertaken between time 30 and 65, the µ2 outcome
is triggered, else µ1 determines the recharge duration.

97

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

The final discrete state of a recharge action corresponds to setting e to its maximum
value. The average durations of outcomes µ1 and µ2 are given by the following equations:

dur(µ1) =
{

1 if (emax − e)/2.9 < 1
(emax − e)/2.9 else

dur(µ2) =
{

1 if (emax − e)/4.7 < 1
(emax − e)/4.7 else

And we use a “deviation” parameter w:

w(µ1) = 1

w(µ2) =
{

1 if dur(µ2 ≤ 8)
2 else

Similarly to the case of movement actions, we implemented two versions of the recharge
action, the first one uses piecewise polynomial distributions, the second one uses discrete dis-
tributions. In the first case, the duration distribution function is — similarly to figure 7.8 —
the cubic spline interpolation going through the points (dur(µ)−w(µ), 0), (dur(µ), 1/w(µ)),
(dur(µ) + w(µ), 0) with slope zero at each interval’s end3.

In the discrete distributions case, the distribution was given as:

Pµ(τ) = 0.25 · δdur(µ)−w(µ)(τ) + 0.5 · δdur(µ)(τ) + 0.25 · δdur(µ)+w(µ)(τ)

There is no reward associated with the recharge action.

7.3.2 Optimization results

We present first the optimization results on the problem with only discrete probability den-
sity functions (version 2 of the movement and recharge actions). For this problem, we used a
threshold on the priorities of 0.1, a precision on the t bounds of 10−3 and an approximation
tolerance of 0.05. The rover problem took 38017 iterations to converge, corresponding to an
average running time of 1690 seconds.

The algorithm was initialized with a null value function in all states. The initial priorities
were obtained by performing a first pass of Value Iteration in the whole state space. The
initial priority queue size was 868.

The evolution of the maximum priorities is shown on figure 7.104. As expected, this
evolution is not monotonous, but since it is closely linked with the Bellman error, it is glob-
ally decreasing. After 38017 iterations no update priority is above 0.1 and the priority list
becomes empty.

Even though the decrease of priorities is not monotonous, one can easily see that, after
the 10000th iteration, the few points which have high priorities are quickly solved and the
moving average of priorities closely follows the lower bound on priorities of figure 7.10. This

3An interesting property of these distributions is that we don’t need any scaling other than the division
by w(µ) to guarantee they sum to one between −∞ and +∞.

4It is important to note that figure 7.10 represents only the evolution of the maximum priority along the
iterations. So each point corresponds to a different abscissa (there is no range of priorities plotted here, only
the largest one). This graph looks very dense because the 38017 points are plotted.

98

7.3. The Mars rover problem

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10000 20000 30000 40000

m
ax

 p
ri

or
ity

iteration number

Figure 7.10: Evolution of the maximum priorities for the Mars rover problem

justifies in practice the use of this moving average curve as a performance profile.

Although the decrease of Bellman error is much faster than in the case of Value Iteration,
the curve is not as steep as one could expect. Reaching a close-to-optimal value function in
10000 state visits is acceptable for a 1968 discrete states problem with an additional con-
tinuous variable, but the decrease in Bellman error seems a little slow. One can explain
this “pathology” by the discretization of the energy variable. By discretizing, we create
a highly connected problem with many states having an almost equivalent value function.
Even though these value functions are very similar, the algorithm needs to update each of the
corresponding states individually, thus linearly increasing the number of state visits needed
to reduce the maximum priority’s value.

In the case at hand (discrete distributions), the piecewise polynomial degree is stable
so the approximation phase is a priori not necessary. However, successive convolutions
with discrete density functions and addition, intersection, etc. yield a piecewise polynomial
function with a lot of definition intervals over which the function itself is almost constant.
Therefore, it makes sense to apply the approximation algorithm in order to reduce this num-
ber of intervals while conserving an L∞-error bounded approximate function. This actually
dramatically increases the algorithm’s performance and avoids many numerical instabilities
such as intervals having null width or the number of intervals exploding.

Figure 7.11 shows the evolution of each iteration’s duration. These times were measured
by steps of 10−2 seconds in order not to slow down too much the execution of the algorithm.
Times returned as equal to zero are actually between zero and 0.01 seconds, but too small
to be measured.

The next figures show the optimal policy and value function obtained in some specific
states:

• p = 1, e = 40, im1 = 0, sa1 = 0, sa2 = 0: figure 7.12.

• p = 3, e = 20, im1 = 0, sa1 = 0, sa2 = 0: figure 7.13.

99

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10000 20000 30000 40000

ite
ra

tio
n

du
ra

tio
n

(s
ec

)

iteration number

Figure 7.11: Evolution of individual iteration durations for the Mars rover problem

• p = 2, e = 20, im1 = 0, sa1 = 0, sa2 = 0: figure 7.14.

• p = 5, e = 30, im1 = 0, sa1 = 0, sa2 = 0: figure 7.15.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70

V
move_to_2
move_to_3
move_to_4

Figure 7.12: State p = 1, e = 40, im1 = 0, sa1 = 0, sa2 = 0 — Value function

The recharge action is very problematic to our algorithm: it almost acts as a wait action
but often provides better results since charging durations are not prohibitively long and they
usually lead to higher gain states. Therefore, several successive optimizations often intro-
duce intermediate charge actions inside other actions. This is not visible on the policy of the
e = 40 states, but becomes obvious with, for example, the e = 20 state whose value function
is represented on figure 7.13.

The policy in state p = 1, e = 40, im1 = 0, sa1 = 0, sa2 = 0 is:

100

7.3. The Mars rover problem

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70

V
move_to_2
move_to_4
move_to_5

take_picture
recharge

Figure 7.13: State p = 3, e = 20, im1 = 0, sa1 = 0, sa2 = 0 — Value function

[0; 44.6159] : move to 2
[44.6159; 70] : move to 3

While the policy in state p = 3, e = 20, im1 = 0, sa1 = 0, sa2 = 0 is:

[0; 30.7689] : move to 2
[30.7689; 39.809] : recharge
[39.809; 49.6915] : move to 4
[49.6915; 49.7044] : recharge
[49.7044; 49.8936] : move to 4
[49.8936; 50.0645] : recharge
[50.0645; 53.0532] : move to 4
[53.0532; 55.2447] : recharge
[55.2447; 55.266] : move to 4
[55.266; 55.2925] : recharge
[55.2925; 55.3298] : move to 4
[55.3298; 55.3772] : recharge
[55.3772; 55.4149] : move to 4
[55.4149; 55.7447] : recharge
[55.7447; 56.1915] : move to 4
[56.1915; 56.2447] : recharge
[56.2447; 58.617] : move to 4
[58.617; 58.6592] : recharge
[58.6592; 58.6809] : move to 4
[58.6809; 58.7447] : recharge
[58.7447; 59.117] : move to 4
[59.117; 59.2447] : recharge
[59.2447; 65] : move to 4
[65; 70] : take picture

Once again, such a policy doesn’t mean “start recharging at time 30.7689 and stop at
time 39.809”, instead it means “if the policy is asked for an action to perform at any time
between 30.7689 and 39.809, trigger the battery recharge action” this action might take us

101

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

to a completely different state at a time independent of the values 30.7689 and 39.809.

It is interesting to note that the rover found it more interesting to go to p = 2 early in the
“morning”, when the lighting is still bad and not appropriate for a picture. This behavior is
consistent with the problem specification of [Bresina et al., 2002] and the expected optimal
plan. We can follow this action and go check in p = 2 what the policy is. For this, we choose
the energy level e = 20. The value function of state p = 2, e = 20, im1 = 0, sa1 = 0, sa2 = 0
is plotted on figure 7.14.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70

V
move_to_1
move_to_3

recharge
sample

Figure 7.14: State p = 2, e = 20, im1 = 0, sa1 = 0, sa2 = 0 — Value function

The associated policy is:

[0; 31.1855] : sample
[31.1855; 33.0164] : recharge
[33.0164; 36.1848] : sample
[36.1848; 38.6721] : recharge
[38.6721; 42.8409] : sample
[42.8409; 54.2447] : recharge
[54.2447; 54.3191] : move to 3
[54.3191; 54.7447] : recharge
[54.7447; 54.8936] : move to 3
[54.8936; 55.2447] : recharge
[55.2447; 55.5] : move to 3
[55.5; 55.7447] : recharge
[55.7447; 56.0426] : move to 3
[56.0426; 56.2447] : recharge
[56.2447; 56.6277] : move to 3
[56.6277; 56.7447] : recharge
[56.7447; 60.766] : move to 3
[60.766; 66] : sample
[66; 66.4311] : move to 3
[66.4311; 70] : sample

102

7.3. The Mars rover problem

While the recharge/act interleaving is still present, we can see that the strategy is consis-
tent: in the morning the rover finds it more interesting to immediately perform the sampling
operation while in the afternoon, it is better to move to the shooting sites in order to get
the best picture possible. This is illustrated again in our last sample state: p = 5, e = 30,
im1 = 0, sa1 = 0, sa2 = 0 whose value function is plotted on figure 7.15

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70

V
move_to_3
move_to_6

recharge
take_picture

sample

Figure 7.15: State p = 5, e = 30, im1 = 0, sa1 = 0, sa2 = 0 — Value function

In this state, the choice is crucial, the rover can either sample the rock, take the picture,
or move to p = 6 to get a better shooting position. The policy found is:

[0; 38.1281] : sample
[38.1281; 40.4101] : recharge
[40.4101; 47.3729] : sample
[47.3729; 49.2064] : recharge
[49.2064; 53.2271] : sample
[53.2271; 65.5] : move to 6
[65.5; 70] : take picture

The recharge/act interleaving appears sometimes between other actions than recharge
as for the latest part of the policy in p = 2, e = 20, etc. Even though there is no final
explanation to this behavior, it can be due to two main different reasons:

• First, TMDPpoly introduces a static ordering over actions5. Therefore, whenever there
is a tie between actions, the same one is always chosen first. Since recharge might take
the process to states with equivalent rewards, this can introduce equivalent actions.

• Secondly, when the actions’ Q functions are very close (but not equal), the approxima-
tion scheme can sometimes slightly alter the monotonicity of a Q function and locally
break the dominance of an action over another. This only occurs when the two Q
functions are already very close in the first place and might result in this interleaving.
Therefore, one can expect such an interleaving to have little impact on the global be-
havior: the value function still tends to the optimal value function.

5This ordering is due to the way we store the transitions: they are sorted by action name for efficient
lookup. Therefore, the static ordering only depends on the alphabetical order.

103

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

It is interesting to notice that as one sweeps through the different energy levels for the
same value of p, the policy bounds change but the structure itself remains. This feature
is illustrated on figures 7.16(a) and 7.16(b). This illustrates the strong similarity between
energy and time in this case and between wait and recharge. It also points out the limits of
the discretization approach which arbitrarily separates continuous domains into discrete lev-
els and makes the problem more complex in discretized form than in continuous formulation.
Solving the problem with two continuous actions wait and recharge would be an interesting
challenge which is beyond the scope of this chapter and will be discussed in chapter 8.

Similarly, figure 7.16(b) illustrates the interests and limits of a kd-tree representation for
the policy or value function. As the number of variables grows, the structure of the policy
becomes harder to capture using sets of hypercubes. Thus, in higher dimensional state spaces
the approaches of [Feng et al., 2004], [Li and Littman, 2005] or [Benazera et al., 2005] might
capture less easily the variations of the policy and value function.

Finally, one can remark that wait rarely appears in the policy. Actually, it does appear
before some movement actions. This can be explained by the fact that it is more risky to
start recharging at the time in question than to wait before moving, taking a picture (for
example) and recharging afterwards. Since recharging times are not too long, in most cases,
it is preferable to recharge first and then to act. wait can also be found just before a recharge
action because of the recharging mode switching.

For version 5 of the rover problem, the final policy and value function is comparable
to the ones presented above. The computation time and number of iterations needed to
reach an empty priority queue are given in table 7.3 for each version. As for the discrete
distributions case, we used a threshold on priorities of 0.1, a precision on t of 10−3 and an
approximation tolerance of 0.05.

Problem version Iterations before convergence Average running time
version 2 38017 1690 seconds
version 5 53976 9155 seconds

Table 7.3: Rover problem — optimization time

Table 7.3 illustrates the calculation overhead introduced by the piecewise polynomial
function calculations, compared to the case of discrete distributions. For an increase in the
number of iterations of a factor 1.4, the calculation time has been multiplied by 5.4. This
underlines the fact that while the complexity of the resolution does not change in terms or
state updates, the calculation times on piecewise polynomial representations still need a lot
of attention and improvement.

Version 4 suffered from another technical difficulty due to the L∞ norm. For continuous
functions of t, it makes sense to use a L∞ norm in order to derive bounds for optimality.
It implies having a precision on V of ε. It implies exactly the same thing for piecewise
continuous functions but the discontinuity points become very hard to solve since the L∞
measure has repercussions on the precision on t for these discontinuity points. This feature
makes the problem of real number rounding even more problematic and quickly introduces
instability in the prioritized sweeping ordering. Thus, the optimization of version 4 of the
rover problem did not converge with our current implementation. It was stopped after 20

104

7.3. The Mars rover problem

 0 10 20 30 40 50 60 70 0
 10

 20
 30

 40

 0

 5

 10

 15

 20

V

Time

Energy

V

(a) Value function and policy in p = 3 when no goals have been completed yet

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

E
ne

rg
y

Time

Wait
Recharge

Take Picture

move_to_2
move_to_4
move_to_5

(b) Policy in p = 3 when no goals have been completed yet — 2D view

Figure 7.16: Structured policy in p = 3 for the rover problem

105

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

hours of computing and about 110000 state updates, while presenting a pseudo-oscillating
behavior on the priorities which we empirically attribute to the approximation phase and
more specifically to the difficulties of calculating the L∞ bounds at discontinuity points.
There might be other reasons which we would not have identified for such a non-convergent
behaviour, such as implementation mistakes in the first place, or approximation tolerance
propagation which induces repetitive Bellman errors of more than ε in some states.

Figures 7.17 and 7.18 show the evolution of the priorities and individual iteration times
when solving version 5 or the Mars rover problem.

 0

 2

 4

 6

 8

 10

 12

 0 10000 20000 30000 40000 50000 60000

m
ax

 p
ri

or
ity

iteration number

Figure 7.17: Evolution of the maximum priorities for the Mars rover problem, version 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10000 20000 30000 40000 50000 60000

ite
ra

tio
n

du
ra

tio
n

(s
ec

)

iteration number

Figure 7.18: Evolution of individual iteration durations for the Mars rover problem, version
5

106

7.4. The UAV patrol problem

7.4 The UAV patrol problem

7.4.1 Problem definition

The second main example we will present here highlights an interesting use of TMDPs. In
all the previous examples, the wait action was mainly used to “freeze” the agent’s discrete
state while letting the time variable grow in order to catch any good future reward available
in the current state. The UAV patrol problem is different in the sense that it does not define
a wait action, but a patrol action which is strictly equivalent to wait in terms of TMDP
description. patrol(τ) is both a continuous action and — contrarily to other wait actions
which usually provide costs — the only action providing rewards. This example illustrates
the fact that we can replace wait by another continuous action and optimize a strategy on
a hybrid action space.

Let us now imagine an unmanned air vehicle (UAV) having a mission defined in terms
of patrolling over certain areas of a map. More specifically, let us imagine a map with four
areas of interest where the UAV has to observe a certain phenomenon. The human agent
specifying the mission indicates during which time intervals the UAV should watch each zone
and assigns different importances to zones in case of scheduling conflicts. For example, one
could say:

“Set importance 2 on position p1 between t = 0 and t = 25,
then set importance 2 on the same position p1 between t = 60 and t = 70,
also set importance 5 on position p2 between t = 45 and t = 50,
assign importance 2 on position p3 between t = 20 and t = 50
and finally set importance 3 on position p4 between t = 45 and t = 70.”

Now let us suppose that the UAV’s navigation map is described as a grid of positions
p = (x, y) as in figure 7.19. This grid represents the navigation environment of the UAV and
the reward rates associated to each of the patrol zones. The UAV is given a meteorological
model indicating how the wind is supposed to blow during the mission and has some proba-
bilistic knowledge about the results of its atomic movement actions depending on the wind.

The planning problem corresponds to finding the optimal policy of movement between
positions and local patrolling as a function of the current position and the current time.
Thus, the action space can be written as in table 7.4 and the state space contains the vari-
ables presented in table 7.5.

patrol(τ) continuous action indicating to patrol the current position
for τ time units

N,S,E,W discrete movement actions taking the UAV to a nearby
position

Table 7.4: Patrol problem — action space

We use this paragraph to shortly present the simple wind model we used. Between t = 8
and t = 30, the wind blows from East to West, and between t = 60 and t = 80, from North
to South. At all other times, there is no wind. When the wind blows, this changes the
probabilities of making a successful move and the transition durations. Without entering

107

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

*

*

*

*

state (3, 8)

0

2

25 60 70

state (5, 2)

0

5

45 50

state (9, 3)

0

2

20 50

state (9, 10)

0

3

60 70

Figure 7.19: UAV patrol problem — Reward rates

t the current time, continuous variable taking its values in [0, 100]
x discrete latitude of the UAV, taking its values in {1, . . . , 10}
y discrete longitude of the UAV, taking its values in {1, . . . , 10}

Table 7.5: Patrol problem — state space

108

7.4. The UAV patrol problem

the modeling details, the wind has the influence of “pushing” the UAV in a specific direc-
tion which shortens or lengthens the movement durations and can result in off-course final
transition states.

Therefore, the UAV patrol problem is a grid world navigation problem with stochastic
movement actions, stochastic continuous transition durations, hybrid state and action spaces
with the TMDP hypothesis on the continuous action.

7.4.2 Optimization results

Because the discrete state space represents only the geographical position of the UAV, this
problem is easy to represent graphically. As in the rover case, we designed several versions
of the patrol problem. The first version uses only discrete probability density functions, the
second one uses piecewise linear density functions.

Table 7.6 summarizes the optimization results for the two versions of the patrol problem.
In both cases, the threshold on priorities was set to 0.1, the approximation L∞ bound was
equal to 0.05 and the precision on t for the approximate polynomial calculations was 10−3.

Problem Iterations before convergence Average running time
version 1 531 13.90 seconds
version 2 824 740.17 seconds

Table 7.6: Patrol problem — optimization time

As in the Mars rover case, the figures of table 7.6 illustrate the fact that piecewise poly-
nomial operations (such as convolution, etc.) still need a lot of optimizing. For an increase
of a factor 1.55 in the number of iterations, the calculation time has been multiplied by 53.25.

One can also compare this number of 531 state visits with the number of state updates
performed in the Value Iteration-like algorithm of [Boyan and Littman, 2001]. With the
latter algorithm, the value function converges to an ε-optimal value function after 330 passes
through the state space, corresponding to 33000 state updates. Therefore, performing asyn-
chronous dynamic programming with priorities reduced the number of state visits by a factor
62.

Figures 7.20 to 7.23 present the evolution of priorities and calculation times for the two
versions of the patrol problem.

The increase of priorities around iteration 120 is due to the same phenomenon as illus-
trated on the three states problem, in section 7.2.

In order to illustrate the evolution of V on a single state, we have selected state (7, 7)
on the first version of the patrol problem. This state is only updated five times during
the whole process. Since there are 531 updates and 100 states, this number of updates is
representative of what happens in average over the whole state space. Figures 7.24 to 7.28
show the evolution of the value function and of the policy. One can tell the “update story”
of this state:

• State (7, 7) is updated for the first time during the 40th iteration because it previously
had a high priority of 74.98, directly inherited from the propagation of the reward for

109

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

m
ax

 p
ri

or
ity

iteration number

Figure 7.20: UAV patrol problem — Priorities evolution, first version

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600

ite
ra

tio
n

du
ra

tio
n

(s
ec

)

iteration number

Figure 7.21: UAV patrol problem — Update durations, first version

110

7.4. The UAV patrol problem

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

m
ax

 p
ri

or
ity

iteration number

Figure 7.22: UAV patrol problem — Priorities evolution, second version

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600 700 800 900

ite
ra

tio
n

du
ra

tio
n

(s
ec

)

iteration number

Figure 7.23: UAV patrol problem — Update durations, second version

111

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

the patrol zone situated in (9, 10) (figure 7.24).

• At iteration 43, one of its neighbors is updated and it receives priority 14.99.

• At iteration 57, again one of its neighbors is updated and it receives a higher priority
of 74.96, thus pushing it almost at the top of the priority list.

• It is then updated for a second time at iteration 66 (figure 7.25).

• Almost immediately after its update, at iteration 68, it receives priority 14.96. These
quick priority changes come from the fact that TMDPpoly focuses on the states which
have the largest variations to let them converge first. Since (7, 7) is one of the central
states in the map, we can expect the policy to be a delicate compromise between direc-
tions and TMDPpoly will focus on it in order to let it converge early in the optimization
process.

• The priorities propagate the change information to the rest of the state space and
nothing happens before iteration 225 when a neighbor is updated again, hence providing
(7, 7) with priority 16.26.

• It is updated for the third time during update 237 (figure 7.26) and keeps its priority
of zero until update number 275 where it receives priority 6.01.

• This priority lets it be updated for the fourth time at update 304 (figure 7.27).

• Its priority is finally set to 0.56 at update 333.

• The final update occurs at iteration 408 (figure 7.28).

• After this iteration no priority of more than 0.1 is assigned to state (7, 7) and the value
function and policy do not change anymore.

TMDPpoly uses the alphabetical static ordering on actions to break any ties. Since actions
“West” and “North” appear to be equivalent several times during the updates, the chosen
action is always “North”, leaving some patches of “West” in the policy when the latter is
strictly dominant (at iteration 304 for instance).

Based on the TMDPpoly planner, we built a graphical demonstration interface for the
patrol problem. As illustrated on figure 7.29, this interface allows to change the optimiza-
tion parameters, perform step-by-step prioritized sweeping, run and pause the optimization
process and save the result to text files or images.

In the “grid” window of the interface, the red square indicates the first state in the cur-
rent priority queue. For instance, on figure 7.29, one can see in window “TMDPpoly” that
124 states have been updated so far and that the current highest priority is 75.93. This
priority is the one of state (4, 6) where the red cursor is positioned. The blue square in the
“grid” window is positioned by the user. It is used to select a certain discrete state and to
display its current V , V and Q functions as well as its current policy in the windows in the
middle.

The numbers displayed on the grid represent the current priority queue. This priority
queue is initialized with the four patrol zones and quickly spreads by local propagation of
the priorities.

112

7.4. The UAV patrol problem

(a) Before (b) After

Figure 7.24: UAV patrol problem — state (7, 7), iterations 40 and 41

(a) Before (b) After

Figure 7.25: UAV patrol problem — state (7, 7), iterations 66 and 67

113

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

(a) Before (b) After

Figure 7.26: UAV patrol problem — state (7, 7), iterations 237 and 238

(a) Before (b) After

Figure 7.27: UAV patrol problem — state (7, 7), iterations 304 and 305

114

7.4. The UAV patrol problem

(a) Before (b) After

Figure 7.28: UAV patrol problem — state (7, 7), iterations 408 and 409

Figure 7.29: UAV patrol problem — graphical interface

115

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

Often, when clicking in the grid on a certain discrete state, one can notice that some
Q-functions are actually higher than the current V or V functions. This is normal since, as
explained in algorithm 6.4 and in section 6.3, Q functions are updated after updating the
V functions, in order to propagate the priorities to parent states. Therefore, some states
can have Q functions higher than their V functions just because their neighbors have been
updated. In these cases, the states in question necessarily have a non-zero priority6.

In the end, the UAV patrol problem illustrate an interesting alternative use of TMDPs by
making the wait (patrol) action the only reward-providing action. It opens the door to the
general specification of hybrid state and action problems as long as they verify the TMDP
hypotheses.

7.5 Conclusion

Finally, this chapter illustrates how the TMDPpoly algorithm works and where are its algo-
rithmic advantages and drawbacks. It results in a formal method for computing the time-
dependent optimal policy for temporal Markov decision problems, formulated as TMDPs.
By pointing out the TMDP limitations, we were able to extend them, both in terms of
representation capability (continuous distributions) and in terms of resolution method (the
TMDPpoly algorithm in itself). A next step in extending the TMDP resolution framework
would be to integrate the use of the W function, specifying the system’s dynamics during
waiting phases. Using this function might however bring the problem back to a more general
setup: if the undisturbed system’s evolution is stochastic, then wait will have to be redefined
and the difference with other possible continuous actions will be reduced. Another step would
be to introduce the biases on priorities which we presented in section 6.3 in order to exploit
even more the causality property associated with the time variable. This indeed corresponds
to extending the priorities definition to states (s, t) (instead of states s currently). Such an
improvement is expected to improve even more TMDPpoly ’s efficiency since it will directly
exploit the loop-free structure of temporal Markov decision problems.

This chapter also brings multiple perspectives. First, it introduces a fully implemented
method for performing what we could name “formal Bellman backups” on a hybrid state
space. This method is directly applied to the TMDP case and depends a lot on the TMDP
hypotheses. It provides a practical, polynomial-based, formal calculus alternative to Monte-
Carlo sampling methods which are the current common way of tackling hybrid state and
action problems.

Chapter 8 will generalize the current TMDP framework to a more general class of hybrid
problems, thus underlining how this current implementation can be reused for more general
cases. Chapter 10 will try to highlight how this method of formal Bellman backups can be
extended to these more general cases and will discuss where the difficulties lie.

Secondly, we used the TMDPpoly algorithm as defined in the previous chapters to solve
hybrid state and action problems such as the Mars rover and the UAV patrol problems. While
this implementation is not able to scale to very large state spaces yet, it already provides a
reasonable basis for solving this class of continuous time problems and extends immediately
to the case of a single continuous state variable and a single continuous action as in the patrol
problem case. Improving this method with heuristic guidance, structured representations of

6Even though, at the end of the algorithm, these priorities can be considered null because they are below
the priority threshold. In this case, the slight variation of Q (amplitude < 0.01 is not visible on the graph).

116

7.5. Conclusion

the discrete part of the state space and better low-level function manipulation operators are
some of the keys needed to scale up to larger domains. While these issues will be discussed
in chapter 10, they are independent of the basis of the TMDPpoly method which already
provides results on time-dependent problems as the Mars rover problem.

Then, one of the main practical conclusions from our experiments is that improving the
efficiency of the POLYTOOLS implementation yields a dramatic improvement of the overall
planner’s efficiency. This is quite natural since the whole architecture is built above the
POLYTOOLS implementation. Therefore, it would be very interesting to:

• improve POLYTOOLS ’s implementation and efficiency in the first place, but also to

• test the TMDPpoly planner with different degrees for interpolation, in particular cubic
splines which are not functional today because of technical implementation reasons;
this will allow us to

• evaluate the degree/pieces compromise7.

Therefore, improvement of the POLYTOOLS / TMDPpoly framework is still necessary to
help understanding the advantages and drawbacks of our method and extend them to more
general cases.

One important conclusion which does not appear visibly in the previous results is the
huge impact of algorithm 6.6 on the optimization process. Without this algorithm, both
the degree of polynomials and the number of definition intervals explode and the optimiza-
tion gets stuck in very long, sometimes unpredictable, calculations for nothing. Even in
the discrete distributions case, algorithm 6.6 decreases dramatically the computational time
while conserving the global efficiency of the method and the L∞ bounds on the value function.

From the algorithmic point of view, the causality feature of temporal Markov problems
has not been used to its full possibilities. Even though this is encouraging with respect to
the adaptability of our method to another continuous variable which would not have such
properties8, it is a point on which improvement of the TMDPpoly algorithm is possible. For
example, focusing on the latest time intervals of the problem first might accelerate conver-
gence since we work with backward propagation. Letting the latest times converge first can
actually insure that full parts of the time-dependent value functions have converged and
need not be further revised. Thus it would exploit more the oriented nature of the time
variable. As mentioned in section 6.3 this could be done by biasing the way we calculate the
priorities. It could also take advantage of partial calculation of the V (s, t) functions: during
the first state updates, only the “latest” part of the function is important, then, when it has
converged, one can focus on “earlier” parts.

Finally, we can conclude that the main obstacle to the TMDPpoly implementation and
experiments was spawned by the very nature of piecewise polynomial functions formal cal-
culus. While this obstacle has been at least partially overcome, there still remains a lot
of possible improvements for this work. These improvements can especially reduce the gap
between the computational times associated to piecewise linear versions of our problems and
the discrete distribution versions. Since the number of iterations needed before convergence

7Compromise between polynomial’s degree and number of definition intervals in the piecewise polynomial
functions.

8Namely, causality implies no current event will have repercussions in the past and thus no change in the
policy at t will have impact on the value function of the current policy at posterior times.

117

Chapter 7. Implementation and experimental evaluation of the TMDPpoly algorithm

is comparable in both cases, using piecewise continuous distributions will become competitive
with discrete ones when the related operations will have been improved regarding calculation
time. Still, by only looking at the number of iterations before convergence, we can deduce
that there was very little additional complexity associated with using these piecewise con-
tinuous distributions at the planner’s level. Moreover, low-level numerical problems such
as the ones mentioned earlier — related to the precision of L∞ bounds and the failures of
root finding methods — illustrate the main obstacles associated to dealing with piecewise
continuous functions in general and piecewise polynomial ones in our particular case. Some
problems intrinsically have such piecewise continuous distributions and it might be rather
cumbersome to approximate them with discrete ones. The TMDPpoly planner with improved
piecewise polynomial functions handling might open the door to directly dealing with such
problems.

118

8
Generalizing MDPs to continuous observable time: the XMDP

framework

Including time as a continuous observable variable in the MDP state space naturally
leads to considering the continuous wait(τ) action on top of all other previous
discrete actions. More generally, including continuous variables in the state space
often calls for continuous or hybrid (continuous and discrete) actions. We have
seen in chapter 2 that the time variable played a particular role with respect to the
discounted criterion. In this chapter, we build on the standard MDP framework
in order to extend it to continuous time and resources and to the corresponding
parametric actions. We aim at providing a framework and a sound set of hypothesis
under which a classical Bellman equation holds in the discounted case.

8.1 Hindsight on the TMDP model: what is the “wait” action?

The wait action defined in the previous chapter and in [Boyan and Littman, 2001] in order to
allow for inactivity is defined as an overlay over the standard Bellman equations. Chapters
4 and 5 showed that it was actually equivalent to letting the system be idle for a while if the
expected gain was better at a latter time. These sections actually highlighted the fact that
in TMDPs, wait indeed was an action, but with some specificities, namely:

• no effect on the discrete part of the state space,

• deterministic with respect to its effects on the time variable,

• no reward when used with zero duration.

It actually seems that there is not one wait action but a whole continuum of these actions
since equation 4.10 optimizes the waiting time. In other words, the action space is hybrid:
it can be described by a set A ∪ R+. All actions chosen inside this action space are either a
waiting duration or a discrete action to undertake.

With this representation of the action space, wait does not differ anymore from any
other continuous action. However, representing the action space as a A ∪ R+ set becomes
more complicated as the number of possible continuous actions grows. This is because the ∪
operator does not capture the action space’s structure: there are several different high-level
actions which differ strongly by nature - eg. goforward, pickup, wait - and each of these

119

Chapter 8. Generalization: the XMDP model

actions corresponds to a continuous action subspace - eg. goforward(l), pickup(), wait(τ).

MDPs are often defined with a finite action space, summarizing all the high-level ac-
tions an agent can undertake. But sometimes, even high-level actions need to be continuous:
“invest an amount X of money”, “go forward L meters”, “inject A centiliters of drug 1”,
etc. are examples of such actions. In standard models, discretizing the action space implies
associating a unique, fixed value to the parameters of each action and hence, restricting
the agent’s possibilities. Figure 8.1 illustrates the problem of discretizing the action space:
an optimal policy in a discretized action space might miss a very reward obtained with an
intermediate action parameter.

x

probability density of the “position” variable
after the action “one step forward”

x

probability density of the “position” variable
after the action “two steps forward”

what if a better movement was one step and a half?

Figure 8.1: The problem of action discretization

This reasoning brings up the notion of parametric action which captures both the struc-
tural part of the action space (different high-level actions with different properties and mean-
ing) and the parametric part (continuous or discrete parameters for each action).

Therefore, one needs to model the wait action of TMDPs as a parametric action — as
the intuition indicated. Moreover, it seems that — even though wait plays a specific role
with respect to the discounted criterion — MDPs could be extended to deal with parametric
action spaces. This representation would allow for easy decoupling (when possible) of the
discrete and the continuous part of the optimization process for the choice of the best action.

Continuous and hybrid state spaces have been addressed in the MDP literature from dif-
ferent points of view. Partially Observable MDP (POMDP, [Kaelbling et al., 1998]) describe
a continuous bounded belief space over possible states. On the other hand, efficient parti-
tioning of a continuous state space using kd-trees and dynamic programming was developed
in [Feng et al., 2004] or [Li and Littman, 2005]. Approximating the continuous transition
functions by phase-type distributions allowing for model simplification, was presented in
[Marecki et al., 2006]. Recent contributions of [Hauskrecht and Kveton, 2006] and [Guestrin
et al., 2004] use Approximate Linear Programming to solve MDPs defined on hybrid state
spaces. However, all these approaches keep a discrete action space. Simple continuous ac-
tion spaces were presented in the examples of [Puterman, 1994] and [Bertsekas, 1995]. They
revisited problems introduced through the formalism of Controlled Markov Chains [Altman
and Shwartz, 1993; Altman, 1999]. Recent advances in reinforcement learning and approxi-
mate dynamic programming such as [Hasselt and Wiering, 2007] also tackle the problem of
solving decision problems with continuous or hybrid action variables.

120

8.2. A model with hybrid state and action spaces and with observable continuous time

Figure 8.2: Illustrative example

The goal of the next paragraph is to generalize the Bellman equation for MDPs to the
case of hybrid state and action spaces with observable time. As the proofs of section 8.3
will show, introducing an observable time is the main difficulty on the way to proving that
the adapted Bellman equation for this broader class of problems is still valid. The results
presented in sections 8.2 and 8.3 were first introduced in [Rachelson et al., 2008a].

8.2 A model with hybrid state and action spaces and with observable
continuous time

8.2.1 Model definition

In order to illustrate the following definitions on a simple example, we propose the game
presented in figure 8.2. In this game, the goal is to bring the ball from the start box to
the finish box. Unfortunately, the problem depends on a continuous time variable because
the boxes’ floors retract at known dates and because actions durations are uncertain and
real-valued. At each decision epoch, the player has five possible actions: he can either push
the ball in one of the four directions or he can wait for a certain duration in order to reach a
better configuration. Finally the “push” actions are uncertain and the ball can end up in the
wrong box. This problem has a hybrid state space composed of discrete variables - the ball’s
position - and continuous ones - the current date1. It also has four non-parametric actions -
the “push” actions - and one parametric action - the “wait” action. We are therefore trying to
find a policy on a stochastic process with continuous and discrete variables and parametric
actions (with real valued parameters). Keeping this example in mind, we introduce the
notion of parametric MDP:

Definition (XMDP). A parametric action MDP, or XMDP, is a tuple 〈S,A(X), p, r〉 where:

S is a Borel state space which can describe continuous or discrete state variables including
the process’ time.

A is an action space describing a finite set of actions ai(x) where x is a vector of param-
eters taking its values in X. Therefore, the action space of our problem is a hybrid
action space, factored by the different actions an agent can undertake. In practice, each
action only depends on a subset of variables from X.

1This illustrative example can actually be written as a TMDP. We draw from the TMDP experience to
generalize to the broader framework of hybrid, parametric actions and hybrid states.

121

Chapter 8. Generalization: the XMDP model

p is a probability density transition function p(s′|s, a(x)).

r is a reward function r(s, a(x)).

8.2.2 Emphasizing the place of time

As in the MDP case, we consider the set T of timed decision epochs. In order to deal with the
more general case, we will consider a real-valued time variable t and — as previously — will
write the state (s, t) in order to emphasize the specificity of this variable in the discounted
case.

So it is important to note that — since we consider t as a state variable — we can split
the random variable describing the current state into a vector with at least two components.
To clarify this, let us reuse a previous SMDP+ notation and call σ any state in the state
space. The first component of the σ vector is the time corresponding to the current state tσ.
The second component is the classical state value sσ, aggregating any other state variable
values which might be defined for the problem at hand.

This leads us to correct our notations: we call S the set of values taken by the vector of
state variables but time. Hence, our state space will be written as the Borel algebra on the
S × R topological space and we will use pairs (s, t) to describe one state. To simplify the
notations, we will refer to this state space as S × R.

Note that for discrete variables, the p() function of the XMDP is a discrete probability
distribution function and that writing integrals over p() is equivalent to writing a sum over
the discrete variables.

Concerning the time variable, if it is discrete and bounded, optimizing a policy for the
XMDP corresponds to optimizing a finite horizon criterion. In the case of continuous ob-
servable time, section 8.4 will show that the TMDP and SMDP+ are subproblems of the
XMDP framework. In order to summarize:

XMDPs are a generalization of MDPs where hybrid action spaces are represented
through the abstraction of parametric actions. Moreover, XMDPs include the pro-
cess’ time as a state variable, thus suppressing the distinction between stationary
and non-stationary policies for MDPs.

Lastly, as previously, we will write δ the number of the current decision epoch, and,
consequently, tδ the time at which decision epoch δ occurs.

8.2.3 Reward model

One can comment that writing the reward model as r((s, t), a(x)) might not span the full
genericity of the models we wish to represent. For instance, we could wish to write some
r((s, t), a(x), (s′, t′)) reward model in order to specify the reward of each transition.

In the following developments, we will nevertheless restrict ourselves to the r((s, t), a(x))
expected reward model for simplicity. Even though we did not write the proofs for the gen-
eral case of r((s, t), a(x), (s′, t′)), making a parallel with the standard MDP case — where

122

8.2. A model with hybrid state and action spaces and with observable continuous time

one can similarly establish equations for r(s, a) or r(s, a, s′) — seems possible.

One interesting option for decomposing the reward model is the one inspired by SMDPs.
A transition reward r(s, a) in an SMDP is given as a lump sum reward k(s, a) and a set of
reward rates c(j, s, a) where the j states correspond to all the intermediate states encoun-
tered during the transition and before the next decision epoch (for details on SMDPs reward
models and underlying stochastic processes, one can refer to [Puterman, 1994], page 533).
The reward model r(s, a) then corresponds to the lump sum reward plus the discounted
integral over possible durations of the reward rates in each state j visited by the underlying
process.

The interesting point in such a reward model is that it separates the lump sum reward
from the reward rates. For an XMDP, such a model would imply an important property for
instantaneous transitions: for such transitions, the reward acquired is only the lump sum
reward.

The TMDP type of reward model is then the extension to (s, a, s′) transitions of such
an SMDP reward model with lump sum reward in t, duration reward through a reward rate
and lump sum reward in t′.

Even though these modelling options might be appealing because of their practical im-
plications, they remain a special case of an r((s, t), a(x)) (or r((s, t), a(x), (s′, t′))) reward
model and we won’t adopt them for further reasoning.

8.2.4 Policies and criterion

We define a deterministic Markovian decision rule at decision epoch δ as the mapping from
states to actions:

dδ :
{
S × R → A(X)
s, t 7→ a(x)

(8.1)

dδ(s, t) specifies the parametric action to undertake in state (s, t) at decision epoch δ. A
policy is defined as a set of decision rules (one for each δ) and we consider, as in [Puterman,
1994], the set D of stationary (with respect to δ) markovian deterministic policies.

Definition (Stationary, deterministic, Markovian policy). Such a control policy π is given
by a single decision rule, applicable at each decision epoch. Hence we identify this decision
rule and the policy:

π :
{
S × R → A(X)
s, t 7→ a(x)

(8.2)

For simplicity and without justification as to the relevance of this approach, we choose
to search for policies in D. Analysis of stochastic or non-Markovian policies for instance is
beyond the scope of this chapter’s results.

In order to evaluate policies in D for our problem, we need to define a criterion. Given
the strong similarity of XMDPs and SMDPs, the discounted criterion we define follows the
example of [Howard, 1963] and integrates the expected reward over all possible transition
durations. We introduce the discounted criterion for XMDPs as the expected sum of the

123

Chapter 8. Generalization: the XMDP model

successive discounted rewards, with respect to the application of policy π starting in state
(s, t):

V π
γ (s, t) = Eπ(s0=s,t0=t)

{ ∞∑
δ=0

γtδ−t0rπ(sδ, tδ)

}
(8.3)

In order to make sure this series has a finite limit, our model introduces three more hypoth-
esis:

• |r ((s, t), a(x)) | is bounded by M ,

• ∀δ ∈ T, tδ+1 − tδ ≥ α > 0, where α is the smallest possible duration of an action ,

• γ < 1.

The discount factor γt insures the convergence of the series. Physically, it can be seen as a
probability of still being functional after time t. With these hypothesis, one can write:

Lemma 1. ∀(s, t) ∈ S × R:

|V π
γ (s, t)| < M

1− γα (8.4)

Proof. Since the transition durations are lower-bounded by α, one can write, for all π ∈ D:

tδ ≤ t0 + δα

γtδ ≤ γt0+δα

γtδ−t0 ≤ γδα

And since |r| is bounded by M we have:

∀π ∈ D,−γδαM ≤ γtδ−t0rπ(sδ, tδ) ≤ γδαM

And finally:

∀π ∈ D,−
∞∑
δ=0

γδαM ≤
∞∑
δ=0

γtδ−trπ(sδ, tδ) ≤
∞∑
δ=0

γδαM

Which finally provides the result of the lemma.

We will further restrict the first assumption by saying that we only consider positive
reward models, thus we write: 0 ≤ r ((s, t), a(x)) ≤ M . In the following discussion, we will
highlight why and where this assumption is necessary.

The rather strong assumption of a lower bound on the duration of transitions will be
important for the proof in section 8.3.2. We will see in section 8.3.3 how we can try to lift
this hypothesis (and why it is not trivial).

However, it seems important to avoid a — somehow intuitive — misconception: this
assumption is a constraint on the transition model and not on the policy search space. The
mentioned misconception would be to believe that the constraint t′ − t ≥ α corresponds to
forbidding any wait(τ) with τ < α action. While this seems intuitively the case, it is not
what is implied by this assumption: any wait(τ) action is possible (with respect to this lower
bound only — we will see a little further that we might have to restrict the A(X) space as
well for other reasons) but their result will always yield a transition with t′ − t ≥ α.

124

8.2. A model with hybrid state and action spaces and with observable continuous time

We will admit that the set V of value functions (functions from S×R to R) is a complete
metrizable space for the supremum norm ‖V ‖∞ = sup

(s,t)∈S×R
V (s, t).

The optimal value function for Markovian, deterministic policies, given the discounted
criterion is defined as V ∗ = sup

π∈D
V π
γ .

An optimal policy in D, if it exists, is then defined as a policy π∗ which verifies V π∗
γ =

sup
π∈D

V π
γ . Guaranteeing the existence of such a policy whose value actually reaches the sup

requires three hypothesis which will be developed in section 8.3.4:

• The r and p models are upper semi-continuous with respect to the parameters x.

• The reward model is positive.

• A(X) is a compact action subset of a topological space describing a finite set of actions
ai(x) where x is a vector of parameters taking its values in X. Since we consider a
finite set of ai high-level actions, this hypothesis can be rephrased for Ai(X): Ai(X)
is homeomorphic to a compact subset of a topological space describing the set of
parameters admissible for the finite set of abstract actions ai.

These three hypothesis guarantee that the value function will be upper semi-continuous and
that there exists a vector x of finite parameters that reaches the sup of the value func-
tion. Such a proof was immediate in the classical MDP model because the action space was
countable, the upper semi-continuity and compacity arguments allow the extension to the
parametric action case.

We avoided including these additional hypothesis directly in the previous model defini-
tion because one can prove the existence of an optimal value function without it. However,
this hypothesis is a sufficient condition to guarantee the existence of a policy whose value
is equal to the optimal value function. So, we will specifically mention when we make these
assumptions in the following proofs.

From here on we will omit the γ index on V .

8.2.5 Summarizing the XMDP’s hypothesis

Based on the previous short discussion, we can summarize the assumptions upon which the
XMDP framework is built. An XMDP problem is given by the S × R and A(X) sets, the p
and r functions, the γ value and the set D of policies, following the assumptions:

Assumption 1 (State space structure). The state space is the Borel algebra defined on a
topological space S × R. In order to simplify the notations, we will write (s, t) ∈ S × R the
elements of the state space.

Assumption 2 (Action space structure). A(x) is the union of a finite collection of sets
Ai(X), where each Ai(X) is homeomorphic to a compact subset of a topological space X.
Each element of A(X) is noted ai(x) where ai refers to the set Ai(X) to which the element
originally belongs and x is the corresponding element in Ai(X). It represents the action set.

Note that since the compacity assumption is not always necessary for all of the following
proofs, we will specifically mention when we use or discard it.

125

Chapter 8. Generalization: the XMDP model

Assumption 3 (Transition model vs. actions). p is a Markovian probability density func-
tion p((s′, t′)|(s, t), a(x)) which is upper semi-continuous with respect to x. It describes the
transition model, from (s, t) to (s′, t′), given action a(x).

Assumption 4 (Reward model vs. actions). r is a real-valued function r((s, t), a(x)) which
is upper semi-continuous with respect to x. It is the reward model of undertaking action a(x)
in state (s, t).

Assumption 5 (Bounded rewards). The reward model is bounded and positive:

∃M ∈ R+/∀(s, t, a(x)) ∈ S × R×A(X), 0 ≤ r((s, t), a(x)) ≤M

Assumption 6 (Time advance). ∀ (an(xn))n∈N ∈ A(X)N, ∀δ ∈ N, tδ+1 − tδ ≥ α > 0

On this basis, we look for a way of characterizing the optimal policy and value function.
Namely, we wish to characterize the value of policies (section 8.3.1), to prove the existence
of an optimality equation for V ∗ (section 8.3.2) and to relate this optimal value function to
an optimal policy (section 8.3.4).

8.3 Extended Bellman equation

We introduce the policy evaluation operator Lπ. Then we redefine the Bellman operator L
for XMDPs and we prove that V ∗ is the unique solution to V = LV . Dealing with random
decision times and parametric actions invalidates the proof of [Puterman, 1994], we adapt it
and emphasize the differences in section 8.3.2.

8.3.1 Policy evaluation

The policy evaluation operator Lπ provides the expected value function associated to apply-
ing π for the first step of execution and then receiving a reward corresponding to V .

Definition (Lπ operator). The policy evaluation operator Lπ maps any element V of V to
the value function:

LπV (s, t) = r(s, t, π(s, t)) +
∫

t′∈R
s′∈S

γt
′−tp(s′, t′|s, t, π(s, t))V (s′, t′)ds′dt′ (8.5)

We note that for non-parametric actions and discrete state spaces, p() is a discrete prob-
ability density function, the integrals turn to sums and the Lπ operator above turns to the
classical Lπ operator for standard MDPs. This operator represents the one-step gain if we
apply π and then get V . We now prove that this operator can be used to evaluate policies.

Proposition (Policy evaluation). Let π be a policy in D. Then V = V π is the only solution
of LπV = V .

Proof. In the following proofs Eπa,b,c denotes the expectation with respect to π, knowing the
values of the random variables a, b and c. Namely, Eπa,b,c(f(a, b, c, d, e)) is the expectation
calculated with respect to d and e, and is therefore a function of a, b and c.

126

8.3. Extended Bellman equation

Our starting point is (s0, t0) = (s, t):

V π(s, t) = Eπs0,t0

{ ∞∑
δ=0

γtδ−trπ(sδ, tδ)

}

= rπ(s, t) + Eπs0,t0

{ ∞∑
δ=1

γtδ−trπ(sδ, tδ)

}

= rπ(s, t) + Eπs0,t0

{
Eπs0,t0
s1,t1

(∞∑
δ=1

γtδ−trπ(sδ, tδ)

)}
The inner mathematical expectation deals with random variables (si, ti)i=2...∞, the outer
one deals with the remaining variables (s1, t1). We expand the outer expected value with
(s1, t1) = (s′, t′):

V π(s, t) = rπ(s, t) +
∫

t′∈R
s′∈S

Eπs0,t0
s1,t1

(∞∑
δ=1

γtδ−trπ(sδ, tδ)

)
· pπ(s′, t′|s, t)ds′dt′

V π(s, t) = rπ(s, t) +
∫

t′∈R
s′∈S

γt
′−tpπ(s′, t′|s, t) · Eπs0,t0

s1,t1

(∞∑
δ=1

γtδ−t
′
rπ(sδ, tδ)

)
ds′dt′

The expression inside the Eπs0,t0,s1,t1() deals with random variables (si, ti) for i ≥ 2. Because
of the Markov property on the p() probabilities, this expectation only depends on the (s1, t1)
variables and thus:

Eπs0,t0
s1,t1

(∞∑
δ=1

γtδ−trπ(sδ, tδ)
)

= V π(s′, t′)

And we have:
V π(s, t) = LπV π(s, t) (8.6)

The solution exists and is unique because Lπ is a contraction mapping on V and we can use
the Banach fixed point theorem (the proof of Lπ being a contraction mapping is similar to
the one we give for the L operator in the next section).

The value function V π corresponding to the expected value of applying policy π
given an XMDP and the discounted criterion of equation 8.3 is the only solution
of:

V π(s, t) = r(s, t, π(s, t)) +
∫

t′∈R
s′∈S

γt
′−tp(s′, t′|s, t, π(s, t))V π(s′, t′)ds′dt′ (8.7)

In order to ease the notations, we introduce an operator which provides the expected
reward of performing a(x) in a given state (s, t) and then receiving value V :

Definition (La(x) operator). The action evaluation operator La(x) maps any element V of
V to the value function:

La(x)V (s, t) = r(s, t, a(x)) +
∫

t′∈R
s′∈S

γt
′−tp(s′, t′|s, t, a(x))V (s′, t′)ds′dt′ (8.8)

One can note that this operator is consistent with the previous notation since LπV (s, t) =
La(x)=π(s,t)V (s, t)

127

Chapter 8. Generalization: the XMDP model

8.3.2 Bellman operator

Introducing the Lπ operator is the first step towards defining the dynamic programming oper-
ator L. This operator provides the value function corresponding to maximizing the reward of
the first action in all states (hence finding a one-step optimizing policy) and then receiving V .

Definition (L operator). The Bellman dynamic programming operator L maps any element
V of V to the value function LV .
In function notation:

LV = sup
π∈D
{LπV } (8.9)

And at the state level:

LV (s, t) = sup
a(x)∈A(X)

La(x)V (s, t)

LV (s, t) = sup
a(x)∈A(X)

{
r(s, t, a(x)) +

∫
t′∈R
s′∈S

γt
′−tp(s′, t′|s, t, a(x))V (s′, t′)ds′dt′

}
(8.10)

This operator represents the one-step look-ahead action optimization, in every state of
the process, with respect to a value function V . We now prove that L defines the optimality
equation allowing to characterize optimal policies for the discounted criterion (equation 8.3).

Proposition (Bellman equation). For an XMDP with a discounted criterion, the optimal
value function is the unique solution of the Bellman equation V = LV .

Proof. The proofs adapts [Puterman, 1994] to the XMDP hypotheses stated above. However,
for this specific proof, we will not make use of some of the previous assumptions. The
assumptions we lift for this proof are: the positive reward model assumption, the compact
action space and the semi-continuous reward and transition models. These assumptions
will prove necessary in section 8.3.4 to prove the existence of an optimal policy but are not
necessary to prove the existence of an optimal value function. Our reasoning takes three
steps:

1. We first prove that if V ≥ LV then V ≥ V ∗,
2. Then, we similarly prove that if V ≤ LV then V ≤ V ∗,
3. Lastly, we prove that there exists a unique solution to V = LV .

Suppose that we have a V such that V ≥ LV . Therefore, with π a policy in D, we have:
V ≥ sup

π′∈D

{
Lπ
′
V
}
≥ LπV . Since Lπ is positive2, we have, recursively:

V ≥ LπV ≥ LπLπV . . . ≥ Lπ(n+1)V

We want to find a N ∈ N such that ∀n ≥ N, Lπ(n+1)V − V ≥ 0.
2Reminder: The concept of spectrum of an operator is the generalization of eigenvalues for matrices to

infinite dimensional spaces. A positive operator has all its spectrum values positive.

128

8.3. Extended Bellman equation

Lπ(n+1)V corresponds to the reward we get for applying policy π for n+1 steps and then
getting reward V .

Lπ(n+1)V = rπ(s0, t0) + Eπs0,t0

(
γt1−t0rπ(s1, t1) + Eπs1,t1

(
γt2−t0rπ(s2, t2) + Eπs2,t2

(
. . .+

Eπsn−1,tn−1

(
γtn−t0rπ(sn, tn) + Eπsn,tn

(
γtn+1−t0V (sn+1, tn+1)

))
. . .

)))

V π = rπ(s0, t0) + Eπs0,t0

(
γt1−t0rπ(s1, t1) + Eπs1,t1

(
γt2−t0rπ(s2, t2) + Eπs2,t2

(
. . .+

Eπsn−1,tn−1

(
γtn−t0rπ(sn, tn) + Eπsn,tn

(∞∑
δ=n+1

γtδ−t0rπ(sδ, tδ)

))
. . .

)))

When writing Lπ(n+1)V −V π one can merge the two expressions above in one big expectation
over all random variables (si, ti)i=0...∞. Then all the first terms cancel each other and we
can write:

Lπ(n+1)V − V π = Eπ(si,ti)
i=0...n

(
γtn+1−t0V (sn+1, tn+1) −

∞∑
δ=n+1

γtδ−t0rπ(sδ, tδ)

)

and thus:

Lπ(n+1)V − V π = Eπ(si,ti)
i=0...n

(
γtn+1−t0V (sn+1, tn+1)

)
− Eπ(si,ti)

i=0...n

(∞∑
δ=n+1

γtδ−t0rπ(sδ, tδ)

)

We write: Lπ(n+1)V − V π = qn − rn.

Since tn+1−tn ≥ α > 0, (tn)n∈N is a divergent sequence. So this last assumption (without
the lower bound α) would be enough to insure that γtn+1 tends to zero.

Lemma 1 indicates that V is bounded by ‖V ‖, γ−t0 is a constant and
(
γtn+1

)
n∈N is a

sequence converging to zero so we have:

γtn+1−t0V (sn+1, tn+1) ≤ γtn+1γ−t0‖V ‖
And we can write lim

n→∞ qn = 0.

On the other hand, rn is the remainder of a convergent series (the criterion). Thus we
have: lim

n→∞ rn = 0.

So lim
n→∞L

π(n+1)V − V π = 0.

We had V ≥ Lπ(n+1)V , so V −V π ≥ Lπ(n+1)V −V π. The left hand side expression doesn’t
depend on n and since the right hand side expression’s limit is zero, we can write: V −V π ≥ 0.

Since this is true for any π ∈ D, it remains true for the superior bound of the value
functions over all π ∈ D:

V ≥ LV ⇒ V ≥ V ∗

129

Chapter 8. Generalization: the XMDP model

We can follow a similar reasoning for V ≤ LV . If V ≤ LV , then there exists π ∈ D such
that V ≤ LπV ≤ LV . Therefore V ≤ Lπ(n+1)V and V − V π ≤ Lπ(n+1)V − V π. With the
same argument as previously, we obtain V − V π ≤ 0. Since V π ≤ V ∗, we have:

V ≤ LV ⇒ V ≤ V ∗

The two previous assertions show that if a solution to V = LV exists, then this solution
is equal to V ∗.

In order to finish proving the proposition, we need to prove that there always is a solution
to V = LV .

According to [Bertsekas and Shreve, 1996] V is a metrizable space, complete for the
supremum norm ‖V ‖∞ = sup

(s,t)∈S×R
V (s, t). If we show that L is a contraction mapping in V,

then we will be able to apply Banach fixed point theorem.

Let us fix (s, t) ∈ S × R and let U and V be two elements of V with LV (s, t) ≥ LU(s, t)
(we suppose LV (s, t) ≥ LU(s, t) only to simplify the writing and will perform the same proof
with LV (s, t) ≤ LU(s, t) later).

We have:

|LV (s, t)− LU(s, t)| = LV (s, t)− LU(s, t)

Since we have withdrawn the assumption that A(X) is compact and that the reward
model is positive, we cannot guarantee the existence of an a(x) which reaches this sup for
V . However, there exists a sequence (an(xn))n∈N of elements of A(X) such that:

lim
n→∞L

(an(xn))V (s, t) = LV (s, t)

Let us consider the sequence
(
L(an(xn))U(s, t)

)
n∈N. This real-valued sequence is bounded

since value functions are bounded. Consequently, we can make use of Bolzano-Weierstrass’
theorem and extract a convergent sequence from

(
L(an(xn))U(s, t)

)
n∈N.

Let us call j the subscripts of this extracted sequence and (aj(xj))j∈N be the sequence
of actions obtained by extracting elements of (an(xn))n∈N correspondingly.

We can now insure the limits exist and write:

lim
j→∞

L(aj(xj))V (s, t) = LV (s, t)

lim
j→∞

L(aj(xj))U(s, t) ≤ LU(s, t)

So:

LV (s, t)− LU(s, t) ≤ lim
j→∞

L(aj(xj))V (s, t)− lim
j→∞

L(aj(xj))U(s, t)

≤ lim
j→∞

[
L(aj(xj))V (s, t)− L(aj(xj))U(s, t)

]
130

8.3. Extended Bellman equation

And:

LV (s, t)− LU(s, t) ≤ lim
j→∞

r(s, t, aj(xj)) +
∫

t′∈R
s′∈S

γt
′−tpaj(xj)(s

′, t′|s, t)V (s′, t′)ds′dt′ −

r(s, t, aj(xj)) −
∫

t′∈R
s′∈S

γt
′−tpaj(xj)(s

′, t′|s, t)U(s′, t′)ds′dt′

Which yields:

LV (s, t)− LU(s, t) ≤ lim
j→∞

∫
t′∈R
s′∈S

γt
′−tpaj(xj)(s

′, t′|s, t) · (V (s′, t′)− U(s′, t′)
)
ds′dt′

But concerning the term inside the limits, we have:

V (s′, t′)− U(s′, t′) ≤ ‖V − U‖
t′ − t ≥ α > 0∫
t′∈R
s′∈S

p(s′, t′|s, t, aj(xj)) ≤ 1

γ < 1

,

so we can write:∫
t′∈R
s′∈S

γt
′−tpaj(xj)(s

′, t′|s, t) · (V (s′, t′)− U(s′, t′)
)
ds′dt′ ≤ ‖V − U‖ · γα

Each of the terms in the

∫

t′∈R
s′∈S

γt
′−tpaj(xj)(s

′, t′|s, t) · (V (s′, t′)− U(s′, t′)
)
ds′dt′

j∈N

se-

quence is lower or equal to ‖V − U‖ · γα, so this remains valid for their limit and we can
finally write:

LV (s, t)− LU(s, t) ≤ ‖V − U‖ · γα

The same argument for all (s, t) ∈ S × R such that LV (s, t) ≤ LU(s, t) yields:

‖LV − LU‖ ≤ ‖V − U‖ · γα

Since γα < 1, this proves L is a contraction mapping on V. Banach fixed point theo-
rem then tells us that there exists a fixed point V ′ ∈ V to the L operator such that V ′ = LV ′.

The previous results allow us to conclude that under the general hypothesis mentioned
above, the equation LV = V has a unique solution and this solution is equal to V ∗, the
optimal value function with respect to the discounted criterion.

LV = V ⇒ V = V ∗ (8.11)

131

Chapter 8. Generalization: the XMDP model

Given an XMDP and the discounted criterion of equation 8.3, the optimal policy’s
value function V ∗ is the only solution, for all (s, t) ∈ S × R, of:

V ∗(s, t) = sup
a(x)∈A(X)

{
r(s, t, a(x)) +

∫
t′∈R
s′∈S

γt
′−tp(s′, t′|s, t, a(x))V ∗(s′, t′)ds′dt′

}

(8.12)

8.3.3 Lifting some of the previous assumptions

We wrote earlier that some of the assumptions listed in section 8.2.5 were quite strong and
that it might be desirable to try to remove them. These assumptions are the positivity of
the reward model, the compacity of the action space and especially the lower bound α on
the transition durations.

Let us start with this last assumption. From the execution point of view, we wish to
avoid any sequence of decisions which might have non-zero duration but a finite cumulative
duration. In other words, in practice, we want our system’s time to move forward for all
control policies and to avoid being “trapped” before a certain horizon. For example, we want
to avoid any sequence of decision epoch’s dates of the type tn = tmax+tn−1

2 . This could be
obtained by a policy like π(t) = wait(tmax−t2) in a simple XMDP with deterministic wait for
instance. Therefore we wish to guarantee we will not be facing such situations which lead to
some kind of temporal “Zeno’s paradox”.

For this purpose, an assumption of the form lim
δ→∞

tδ = ∞ seems sufficient and not as

restrictive as imposing a strictly positive lower bound. However, if this softer hypothesis
guarantees that the execution moves forward in time, it does not allow to maintain the
previous proof. Before explaining where the problem is in the proof, let us formalize this
assumption a little more to illustrate why it does not really provide more genericity than the
“α” lower bound.

A first way of writing this assumption formally is to consider that it affects the XMDP
model itself. This way, the assumption would be written:

Assumption 7. We suppose that the transition model p of the XMDP is such that:

∀ (an(xn)) ∈ A(X)N, lim
δ→∞

tδ =∞

This puts hard constraints on the transition model since, for instance, to satisfy this as-
sumption, the behavior of a sequence of actions generated by the previous example’s policy
π(t) = wait(tmax−t2), would conflict with the intuitive transition model of wait.

Another possibility to formulate this assumption is to restrict the search space even more
and say that:

Assumption 8. Given the XMDP’s transition and reward models, we look for the optimal
policy among the set of policies: {

π ∈ D| lim
δ→∞

tδ =∞
}

132

8.3. Extended Bellman equation

Here again, this assumption puts many constraints on the search space and conflicts with
the intuition that the model itself should exhibit a “natural” behavior, independently of the
policy search space.

An interesting way of lifting this assumption builds on the idea that some actions might
not be available in every state of the process. The subsets of actions available in state (s, t)
can be written As,t. This adds an extra structuring element in the XMDP model and would
allow to introduce a more natural assumption such as:

Assumption 9. Given the XMDP’s transition and reward models, we suppose that the
available action sets As,t insure that:

∀ (an(xn)) ∈ A(X)N, lim
δ→∞

tδ =∞

In more practical words, this last assumption expresses the fact that whenever the pro-
cess enters a sequence of actions whose cumulative duration would lead to a “contracting
time”, it will eventually reach one of the states having an As,t such that the process leaps
forward in time and exits such a “dead-end” sequence.

These first attempts at removing this lower bound on the transition durations are all
destined to insure that our model describes a divergent sequence of decision epochs (one
could try to consider an example where a contracting time has physical meaning but such
an application requiring a convergent time might not be very common). However there is
another way of looking at this problem, which is to consider that we imposed this lower
bound to guarantee that our criterion exists and to make the previous proofs.

Here again, having a simply divergent set of decision epoch’s dates is not sufficient.
One could build the counter-example of a situation where the sequence of actions applied is
an(xn) = wait(ln(1 + 1

n)) in an XMDP with a deterministic wait action a discount criterion
γ of 0.9 and a reward model of +1 at each step. The sequence of decision epochs induced
is tn = ln(n+ 1) which tends to ∞ while the expected reward of such a sequence of actions
tends to ∞ as well.

Moreover, during the previous proof, we took care of mentioning where the lim
δ→∞

tn =∞
hypothesis was sufficient in place of the tδ+1 − tδ ≥ α assumption. However, at the end of
the proof, in order to show that L is a contraction mapping, we needed to bound γt

′−t by
a factor strictly smaller than 1. This required bounding the difference t′ − t. One could
try to lift the “α” hypothesis by writing that a finite number — at most K — of several
consecutive transitions will have a cumulative duration of more than alpha, thus allowing a
finite number (less than K) of transition durations to be less than alpha and rewriting the
proof to show that LK (instead of L) is a contraction mapping.

This previous idea needs also to be related to the question of convergence of a Bellman
equation in the MDP case with a total reward criterion since our discount factor tends to
one when the transition duration tends to zero. In this case, the contraction property of L
is more complicated to establish: while a single application of L might not be a contraction
mapping, a repeated application (as LK for instance) might recover this property.

This parallel actually provides two new ways of lifting the lower bound on transition
durations. The first one is the K idea mentioned above: it states that for any policy π and
any value α, there exists K ∈ N such that ∀δ ∈ N, tδ+K − tδ > α:

133

Chapter 8. Generalization: the XMDP model

Assumption 10. We suppose that the transition model and the As,t set (if they exist) insure
that:

∀π ∈ D,∀α ∈ R+,∃K ∈ N / ∀δ ∈ N, tδ+K − tδ > α

This assumption lifts the α bound for individual transitions but keeps it for a sequence
of K transitions.

Note that while the previous assumptions were designed for any sequence of actions
(an(xn)) ∈ A(X)N, this last one stands only for the sequences of actions induced by the
application of π. While this seems to be a lighter assumption, it remains very difficult to
verify in practice.

The last possibility we consider is a completely different approach which is based on a
restriction of the reward model. If the reward obtained as the transition duration tends
to zero, also tends to zero with the same convergence rate, we might be able to guarantee
again the convergence of the criterion. This is relatively easy to guarantee if one looks at
an SMDP-like reward model since it corresponds to having a zero lump sum reward and
only a reward rate. However, this hypothesis restricts us to only a fraction of the models
which could be described otherwise by XMDPs. We call this assumption the “no lump sum
reward” assumption:

Assumption 11. The reward model has only reward rates and no lump sum rewards. More-
over, the reward r((s, t), a(x)) associated with a transition is a discounted reward as in the
SMDP case:

r(s, a) = 0 +
∫ ∞

0

∑
j∈S

[∫ u

0
γtc(j, s, a)p(j|t, s, a)dt

]
F (du|s, a) (8.13)

This equation is to be related with equation 2.26 with no lump sum reward.

Hence, our conclusion for this “lower bound on durations assumption” is that there exist
ways of lifting it in some specific cases which can occur quite often in practice. However,
establishing the proof for a general setting of XMDPs without the lower bound assumption
of transition duration (or without adding another hypothesis on the reward model) seems
more difficult.

The next section discusses the origin of the “reward model positivity”, “upper semi-
continuity of the reward and transition models” and “compacity of the action space” as-
sumptions.

8.3.4 Existence of an optimal policy

In order to illustrate why the upper semi-continuity and positivity hypotheses are necessary,
we can try to prove the following lemma which makes use of these assumptions.

Lemma 2. ∀π ∈ D, a(x) ∈ A(X), La(x)V π is upper semi-continuous in x.

Proof. Because the reward model is positive, V π(s′, t′) is necessarily positive.
Since γt

′−t is also positive, one can write:
For all (s, t, s′, t′) ∈ S × R× S × R, the function

g(s,t,s′,t′)(a(x)) = γt
′−tp(s′, t′|s, t, a(x))V π(s′, t′)

134

8.3. Extended Bellman equation

is upper semi-continuous in x and so is its sum with respect to s′ and t′. Since r(s, t, a(x))
is also upper semi-continuous in x, the La(x)V π(s, t) function of x is upper semi-continuous
with respect to x.

Then, if one wishes to find the sup
a(x)∈A(X)

La(x)V π(s, t) and if this sup corresponds to a

discontinuity point of La(x)V π(s, t) with respect to a(x), inside A(X), then the upper semi-
continuity property of lemma 2 insures that there is an a(x) which reaches this sup.

However, this sup value can correspond to an upper bound on the reachable values at the
border of the A(X) action space. The assumption of compacity for A(X) (which is, indeed,
an assumption of compacity of each Ai(X)) is then a sufficient condition to guarantee that
there is always an a(x) which reaches this sup.

Consequently, the three assumptions of “reward model positivity”, “upper semi-continuity
of the reward and transition models” and “compacity of the action space” constitute a suf-
ficient set of assumptions to guarantee that this sup is a max.

Since V ∗ = sup
π∈D

V π, V ∗ is also positive. This last result insures that for any state (s, t),

there exists an optimal action a∗(x∗) defined by:

a∗(x∗) = argsup
a(x)∈A(R)

{
r(s, t, a(x)) +

∫
t′∈R
s′∈S

γt
′−tpa(x)(s′, t′|s, t)V ∗(s′, t′)ds′dt′

}
(8.14)

Finally, we were able to prove the existence of an optimal value function without these
assumptions but still require them to guarantee the existence of an optimal policy.

8.3.5 Parametric formulation of Dynamic Programming

One can rewrite the previous Bellman equation in the following way, making it more
suitable for dynamic programming algorithms such as value or policy iteration:

LV (s, t) = max
a∈A

sup
x∈X

{
r(s, t, a(x)) +

∫
t′∈R
s′∈S

γt
′−tp(s′, t′|s, t, a(x))V (s′, t′)ds′dt′

}

(8.15)

Using this formulation, we alternate:

1. an optimization on x of each action’s value, providing the optimal parameter’s value
per action,

2. a choice among the (discrete) set of possible actions (with their optimal parameters).

For a brief example giving the flavor of the next section, we can imagine a problem with
a single continuous time variable factoring a discrete state space and a single continuous
duration parameter τ affecting only the “wait” action. This is a generalized TMDP setup
(TMDP without the hypothesis on wait). Then equation 8.15 can be straightforwardly im-
plemented as a two-step value iteration algorithm. The first step calculates the optimal value

135

Chapter 8. Generalization: the XMDP model

of τ for any action that depends on it. The second step is a maximization step over all ac-
tions with their optimal parameter. This naive example shows the difficulties we can expect
form designing algorithms to solve XMDPs. These difficulties deal with representing the
continuous functions of the model’s dynamics, solving the integrals in the Bellman equation
and representing the continuous part of the policy. These problems have been encountered
more generally when dealing with continuous variables in MDPs and various solutions for
representing / approximating value functions have been proposed in [Boyan and Littman,
2001; Liu and Koenig, 2006; Li and Littman, 2005; Marecki et al., 2006; Hauskrecht and
Kveton, 2006].

One can notice that if the state space is discrete, all probability density functions are
discrete and integrals turn to sums. If the parameter space is discrete as well, by re-indexing
the actions in the action space, the sup operator turns to a max and the above Bellman
equation (equation 8.11) is the standard dynamic programming equation characterizing the
solutions of classical MDPs. Therefore we can conclude that the XMDP model and its
optimality equation includes and generalizes previous results for standard MDPs.

8.4 Back to the TMDP framework

We have introduced the XMDP framework on the intuition that hybrid actions could be
efficiently represented via parametric objects. This raised the problem of a continuous time
variable in the optimality equation and thus called for an extension of Bellman’s equation.
This framework was inspired by the TMDP’s wait action. We now need to check that the
TMDP problem can be written in the framework of parametric actions. Let us start by
identifying the elements of both formalisms:

• The state is composed of the (s, t) ∈ S×R variables as defined in the TMDP definition
of sections 2.2 or 4.5.1. Let us redefine the notations and write sd the discrete part of
the TMDP state space (Sd being the set of discrete states) and st the time variable (St
being its definition set), thus we write s = (sd, st) and S the complete state space.

• The action space includes all discrete actions which are independent of the parameter’s
vector. For each discrete action ai, we actually have ai(x) = ai. We add a single
parametric action to this action set: the wait(τ) action, with τ the duration parameter.
The parameter space is therefore composed of a single variable x = τ and X = R+.

• For discrete actions, we have:

p(s′|s, a(τ)) =
∑
µs′
d

L(µs′d |sd, a, st) · Pµs′d (s′t − st)

µs′d being the set of outcomes µ reachable from state s and reaching s′d. Here, the ABS
and REL cases only have a modeling importance: in both cases it is the transition
duration that is defined for a given outcome. If needed, one could replace Pµs′

d

(s′t− st)
by Pµs′

d

(s′t) in order to get back to the ABS case. Since the wait action is considered
deterministic and stationary, one can write:

P (s′|s, wait(τ)) =
{

1 if s′d = sd and s′t = st.
0 else

In other words:
p(s′|s, wait(τ)) = δ(sd,st+τ)(s

′)

136

8.4. Back to the TMDP framework

• Finally, the reward model is defined as previously for discrete actions:

r(s, a(τ)) = rt(µs′d , st) +
∫
s′∈S

p(s′|s, a(τ))
[
rt′(µs′d , s

′
t) + rτ (µs′d , s

′
t − st)

]
ds′ (8.16)

And for the parametric wait action, one has: rτ (µs′d , y) =
∫ st+y

st

K(sd, θ)dθ, rt(µs′d , st) =

0 and rt′(µs′d , s
′
t) = 0, and thus:

r(s, wait(τ)) =
∫ st+τ

st

K(sd, θ)dθ

One could note that a natural partition in three parts of the state space arises: first the
set of discrete variables Sd which yields discrete probability distributions in the transition
model, then the set of continuous variables Sc which is empty for TMDP problems and fi-
nally the temporal variable which takes its values from the set St and which feeds the special
τ(s′t − st). This natural decomposition results from the abstraction of the three different
aspects of XMDP problems: discrete, continuous and temporal.

It is also important to note that, if one tries to relate the TMDP hypotheses to the discus-
sion in section 8.3.3, TMDPs fall under the “infinitesimal lump sum reward for infinitesimal
duration transitions” case for which we admit that the Bellman equation still holds.

Similarly, one can notice that the parameter space X is not upper bounded which can
be a problem in order to find an optimal policy. In practice, this has little impact because
the resolution scheme of TMDPs is a value iteration algorithm, looking for the optimal value
function before inferring the optimal policy. For this optimal policy, one can consider that we
are looking at the extended real number line for the parameter set: X = R, hence allowing
a waiting time until t =∞3.

The TMDP model can thus be mapped into the framework of parametric actions. The
main problem to address is to identify the optimality equations of the TMDP and XMDP
models. We wish to solve equation 8.15 with the TMDP hypotheses:

V ∗(s) = max
a∈A

 sup
τ∈R+

r(s, a(τ)) +
∫

s′∈S
γs
′
t−stV ∗(s′)p(s′|s, a(τ))ds′

= max

a∈A

 sup
τ∈R+

r(s, a(τ)) +
∫

s′∈S
γs
′
t−stV ∗(s′)

∑
µs′
d

L(µs′d |sd, a, st) · Pµs′d (s′t − st)ds′

= max
a∈A

 sup
τ∈R+

r(s, a(τ)) +
∫∫
s′d∈Sd
s′t∈St

γs
′
t−stV ∗(s′)

∑
µs′
d

L(µs′d |sd, a, st) · Pµs′d (s′t − st)ds′dds′t

= max
a∈A

 sup
τ∈R+

r(s, a(τ)) +
∑
s′d∈Sd

L(µs′d |sd, a, st)
∫

s′t∈St

γs
′
t−stV ∗(s′) · Pµs′

d

(s′t − st)ds′t

3This actually provides a formal explanation to the fact that TMDP policies are equal to wait after the
pseudo-horizon.

137

Chapter 8. Generalization: the XMDP model

In the TMDP framework, we had γ = 1; we also admit the extension of the previous
optimality equation to the γ = 1 case. So4:

V ∗(s) = max
a∈A

 sup
τ∈R+

r(s, a(τ)) +
∑
s′d∈Sd

L(µs′d |sd, a, st)
∫

s′t∈St

Pµs′
d

(s′t − st)V ∗(s′)ds′t

One can separate the wait action from the discrete actions. Let us write A− = A \ {wait}:

V ∗(s) = max

maxa∈A−

 sup
τ∈R+

r(s, a(τ)) +
∑
s′d∈Sd

L(µs′d |sd, a, st)
∫

s′t∈St

Pµs′
d

(s′t − st)V ∗(s′)ds′t

 ,

sup
τ∈R+

r(s, wait(τ)) +
∑
s′d∈Sd

L(µs′d |sd, wait(τ), st)
∫

s′t∈St

Pµs′
d

(s′t − st)V ∗(s′)ds′t

So:

V ∗(s) = max

maxa∈A−

 sup
τ∈R+

r(s, a(τ)) +
∑
s′d∈Sd

L(µs′d |sd, a, st)
∫

s′t∈St

Pµs′
d

(s′t − st)V ∗(s′)ds′t

 ,

sup
τ∈R+

(
r(s, wait(τ)) + V ∗(sd, st + τ)

)}

The static nature of wait (no change of the discrete part of the state during waiting)
implies that one cannot have two successive wait actions resulting from the optimality equa-
tion. We prove this by contradiction by considering the quantity sup

τ∈R+

(. . .). We show that in

a given state (s, t), if the policy specifies two successive actions wait(τ1) and wait(τ2) with
τ1 and τ2 non null, then there exists an action wait(τ1 + τ2) with an expected reward higher
than wait(τ1) in (s, t). Therefore wait(τ1) does not correspond to argsup

τ∈R+

(. . .).

On top of that, the reward associated with a zero duration waiting is null (r(s, wait(0)) =
0). Hence, we can consider the execution of the policy as a sequence of actions alternating
wait and discrete actions. This specificity of TMDPs allows to write:

V ∗(s) = sup
τ∈R+

r(s, wait(τ)) + max
a∈A\{wait}

r(s, a(τ)) +
∑
s′d∈Sd

L(µs′d |sd, a, st)·

∫
s′t∈St

Pµs′
d

(s′t − st)V ∗(s′)ds′t

 (8.17)

But the reward model of equation 8.16 can be decomposed into:

4As mentioned earlier, we consider implicit the difference between REL and ABS cases. One could, if
needed, replace Pµs′

d
(s′t − st) by Pµs′

d
(s′t).

138

8.5. Conclusion on the XMDP framework

r(s, a(τ)) = rt(µs′d , st) +
∫
s′∈S

p(s′|s, a(τ))
[
rt′(µs′d , s

′
t) + rτ (µs′d , s

′
t − st)

]
ds′

=
∫
s′∈S

p(s′|s, a(τ))
[
rt(µs′d , st) + rt′(µs′d , s

′
t) + rτ (µs′d , s

′
t − st)

]
ds′

=
∑
s′d∈Sd

L(µs′d |sd, a, st)
∫

s′t∈St

Pµs′
d

(s′t − st)
[
rt(µs′d , st) + rt′(µs′d , s

′
t) + rτ (µs′d , s

′
t − st)

]
ds′t

Hence, equation 8.17 can be written:

V ∗(s) = sup
τ∈R+

r(s, wait(τ)) + max
a∈A\{wait}

∑
s′d∈Sd

L(µs′d |sd, a, st)·

∫
s′t∈St

Pµs′
d

(s′t − st)
[
rt(µs′d , st) + rt′(µs′d , s

′
t) + rτ (µs′d , s

′
t − st) + V ∗(s′)

]
ds′t

 (8.18)

Equation 8.18 corresponds exactly to equations 4.10 to 4.13. Consequently, the policy
expressed with the parametric actions formalism is the same as the one calculated within
the TMDP framework. This provides an answer to the initial question:

The TMDP problem is an undiscounted non-stationary parametric action problem
and its dynamic programming resolution is equivalent to solving equation 8.15.

In the method presented by [Boyan and Littman, 2001] and improved in chapter 6 the
parametric aspect is hidden by the inclusion in TMDP policies of pairs of wait and discrete
actions. This is made possible because wait(0) has no effect on the state and provides no
reward. Separating these pairs of actions brings the resolution back to the general frame-
work of parametric actions and continuous time which we captured in the XMDP framework.

It is now rather easy to provide a discounted Bellman equation for TMDP problems. If
γ < 1, then equation 8.18 can be written:

V ∗(s) = sup
τ∈R+

r(s, wait, τ) + γτ max
a∈A\{wait}

∑
s′d∈Sd

L(µs′d |sd, a, st)·

∫
s′t∈St

γs
′
t−stPµs′

d

(s′t − st)
[
rt(µs′d , st) + rt′(µs′d , s

′
t) + rτ (µs′d , s

′
t − st) + V ∗(s′)

]
ds′t

 (8.19)

This equation is the discounted dynamic programming equation for TMDPs.

8.5 Conclusion on the XMDP framework

Our goal when introducing the XMDP framework was not to design a new method for solving
time-dependent or hybrid state and/or action spaces MDPs. On the contrary, we wanted

139

Chapter 8. Generalization: the XMDP model

to provide a sound framework with clear hypotheses, easily captured by intuition, which
generalized MDPs to these hybrid spaces and which explicitly included the time variable.

What we have in the end is a model, similar in some ways to the Borel model for MDPs
as presented in [Puterman, 1994] and rarely used as such, which includes observable time
and makes the link with the successive decision epochs of the process to control. We can
summarize these results:

An XMDP is a 4-tuple 〈S,A(X), p, r〉 describing a temporal decision process,
defined over hybrid state and action variables and over a continuous observable time.

When the assumptions of section 8.2.5 are verified, one can guarantee the validity
of a policy evaluation equation V π = LπV π and an optimality equation V ∗ = LV ∗

for a discounted criterion.

These equations and assumptions provide the existence and characterization of an
optimal policy π∗.

140

9
Perspectives: evolutive partitioning of time

The main practical drawback from the analytical calculation of V ∗ in the TMDPpoly
case — aside from technical computational difficulties — comes from the very large
number of separate definition intervals in the value function. When comparing
this number to the number of definition intervals needed to describe the policy,
one could try to imagine another approach which would not necessitate such a fine
representation of the value function. The method we develop in this chapter rests
on the very simple idea that the crucial problem is to identify the bounds of the
policy’s temporal definition intervals. However, finding these bounds and finding
the optimal action to perform in-between belong to the same optimization process.
We try to iteratively find the values of all decision variables (bounds and actions)
by solving a sequence of discrete problems generated by incremental evolution of
the local temporal bounds.

This chapter is a “perspectives” chapter since it describes unfinished work and makes
the link between different ideas. The ideas presented here are related both to the same
problematic as the previous chapters on solving time-dependent MDPs, but also introduce
the first ideas of approximate policy iteration for complex temporal problems which will be
developed in the second part of the thesis. Quite ironically, the idea of evolutive temporal
bounds for SMDP+ came chronologically very early in the thesis and spawned a lot of the
research developments. Even though this idea did not result in a proper implementation, it
provides a nice abstraction and overview of the problem of finding the bounds of decision
intervals. It also introduces the idea of direct policy search which is at the core of the thesis’
second part.

9.1 Definitions and general idea

We work with the general case of discounted SMDP+ as presented in chapter 4. We shortly
recall the SMDP+ definition and the optimality equation derived from the proofs of chapter
8. An SMDP+ is given by the 4-tuple 〈Σ, A+, Q,R〉 where:

• Σ is the augmented state space containing all σ = (s, t) elements. This state space can
be decomposed into:

– a discrete state space s ∈ S,

– a continuous time axis R.

141

Chapter 9. Perspectives: evolutive partitioning of time

• A+ is the action space which can be decomposed into

– A, the discrete action space,

– wait the parametric action representing idleness.

• Q(σ′|σ, a) is the cumulative transition model. It can be writtenQ(σ′|σ, a) = P (s′|s, t, a)·
F (t′|s, t, a, s′). As previously and for convenience, we will write the probability density
functions indifferently as f(t′|s, t, a, s′) or f(τ |s, t, a, s′), with:

f(t′|s, t, a, s′) =
{

0 if t′ < t
f(τ = t′ − t|s, t, a, s′) if t′ ≥ t

• R(σ′, a, σ) is the reward model. It can be reformulated as:

r(σ, a) =
∑
s′∈S

P (s′|s, t, a)
∫ ∞
−∞

f(t′|s, t, a, s′)R(σ′, a, σ)dt′ (9.1)

The value of policy π is the cumulative sum of all successive rewards, each being dis-
counted by a γt factor corresponding to the reward’s date. Policy π’s value function obeys
equation 9.2.

V π(σ) =
∑
s′∈S

∞∫
0

(
R(s′, t+ τ, π(σ), σ) + γτV π(σ′)

)·f(τ |σ, π(σ), s′)P (s′|σ, π(σ))dτ = Ltπ(V π)(σ)

(9.2)
The optimal policy’s value function V ∗ obeys equation 9.3.

V ∗(σ) = max
a∈A+

∑s′∈S
∞∫
0

(
R(s′, t+ τ, a, σ) + γτV ∗(σ′)

) · f(τ |σ, a, s′)P (s′|σ, a)dτ

 (9.3)

V ∗(σ) = LV ∗(σ)

A policy defined for SMDP+ models is a mapping from Σ to A+ specifying which action
to undertake in discrete state s at time t. If the action is wait then it corresponds to let
the system evolve by itself until we reach a new pair (s, t) where another action is necessary.
Section 4.5.1 proved that — because wait is supposed deterministic with regard to time and
does not change the state — this policy was indeed equivalent to a continuous TMDP policy.
However, as soon as the effects of “wait” become stochastic with respect to the state, this
equivalence does not hold anymore.

Hence, in a given discrete state s, one can describe the policy π(s, t) as “for all dates
between t0 and t1, the best action to undertake is a4, however if t is between t1 and t2 it
is better to remain idle, and between t2 and t3 the best action is a1”. Starting with this
simple description, we try to find the values of t0, t1, etc. as well as the optimal actions on
these intervals at the same time. This approach was first suggested in [Rachelson et al., 2006].

We can rephrase this goal by saying that we look for the most efficient partitioning of the
time resource per state. For this purpose, we define the notion of decision interval. A de-
cision interval in a given discrete state is a temporal interval over which the policy is constant.

One can relate the notion of decision interval to the Borel model of MDPs as presented
in [Puterman, 1994] and, more practically, to the continuous variables partitioning of [Feng

142

9.2. Evolution of decision intervals and actions by solving a sequence of discrete problems

et al., 2004], [Li and Littman, 2005] or [Benazera et al., 2005]. Similarly to these approaches,
decision intervals can be easily factored and represented as kd-tries for example. However,
we are not directly looking for an incremental refinement of our discretization as in [Munos
and Moore, 2002], but for an incremental evolution of the decision intervals set of bounds (in
number of bounds and in value). The central idea of the method we introduce in the next
section is to populate, correct and reduce the set of bounds per state as needed to define and
improve the policy.

9.2 Evolution of decision intervals and actions by solving a sequence
of discrete problems

9.2.1 Algorithm overview

Let us introduce the set Ts of decision intervals in s, relative to the last policy defined. With
this discrete set of intervals, we can consider the discrete abstract state space:

Σ̃ = {(s, T) /s ∈ S, T ∈ Ts}

Suppose we start with an initial guess of the time partitions per state, ie. we have an
initial T = {Ts, s ∈ S}. Then our algorithm proceeds in four steps:

• Discretization. First of all, it computes the transition and reward models of the M̃
discrete MDP, having state space Σ̃ and approximating the behaviour of the hybrid
SMDP+ problem M .

• Action optimization. Then we compute the optimal policy with respect to the M̃
problem. Let π̃ be this policy. We merge any two consecutive intervals of Ts over which
the optimal action remains the same.

• Policy evaluation. Third we evaluate π̃’s value with respect to the continuous model
by defining the corresponding SMDP+ policy π.

• Decision interval’s evolution. Finally we use this value function to perform a single
Bellman backup providing the date where we could bring the best improvement to the
policy’s value. We use this date to populate the sets Ts.

9.2.2 The method in detail

We can now consider these four phases in detail.

First step and initialization: generating M̃ . We build the discrete MDP problem
M̃ with:

• the state space Σ̃,

• the action space A+,

• the transition function Q̃(σ̃′|σ̃, a),

• the reward model r̃(σ̃, a).

143

Chapter 9. Perspectives: evolutive partitioning of time

The transition model Q̃(σ̃′|σ̃, a) describes the probability that action a, undertaken in
sσ, during Tσ, takes the process to state sσ′ at a date belonging to Tσ′ . Similarly r̃ represents
the average reward obtained when applying a and going from (sσ, Tσ) to (sσ′ , Tσ′).

More precisely, if tlow and tup represent respectively the lower and upper bounds of
interval Tσ, we can choose to calculate Q̃ as the average over the Tσ interval of the probability
of reaching the Tσ′ interval:

Q̃(σ′, a, σ) =
1

tup − tlow

∫ tup

tlow

Pr(t′ ∈ Tσ′ , s′ = sσ′ |a, sσ, tσ)dt

=
1

tup − tlow

∫ tup

tlow

(
P (s′|s, t, a)

∫ t′up

t′low

f(t′|s, t, a, s′)dt′
)
dt

And if we write the cumulative distribution function F :

F (v|s, t, a, s′) = Pr(t′ ≤ v|s, t, a, s′) =
∫ v

−∞
f(t′|s, t, a, s′)dt′

Then we have:

Q̃(σ′, a, σ) =
1

tup − tlow

∫ tup

tlow

P (s′|s, t, a)
[
F (t′up|s, t, a, s′)− F (t′low|s, t, a, s′)

]
dt (9.4)

Similarly, we chose to write r̃ as the average over the Tσ interval of the rewards obtained
during the transitions (σ, a, σ′).

r̃((sσ, Tσ), a) =
1

tup − tlow

∫ tup

tlow

r((sσ, t), a)dt (9.5)

The choice of taking the average over the Tσ interval is arbitrary and questionable. One
could choose, for example, to use the best reward obtained over the interval in order to build
an optimistic reward model instead.

The transition model of wait takes the process to a new state described by the system’s
dynamics P (s′|s, t, wait) = W (s′|s, t) and to the first date of the next decision interval in s′.

Evaluating the discrete Q̃ and r̃ functions can be done easily through analytical calcu-
lation as previously if possible. Else, it can be approximated via Monte-Carlo sampling or
continuous functions discretization.

It is important to note that M̃ is an approximation and an abstraction of M . It is an
approximation is the sense that it approximates the transition and reward models over the
decision intervals by taking the average values. It also is an abstraction because it does not
respect the causality principle anymore. In M̃ , it is possible to reach a temporal interval
beginning before the current date, and from this interval, to reach another prior interval
which would entirely lie before the initial current date. Therefore, M̃ can be seen as an
approximate optimistic problem where causality can be violated and where reachability is
considered from a very optimistic point of view.

We provide no theoretical justification of the soundness of such an approximation and
abstraction. Instead, we rely on the idea that one does not need to evaluate exactly the
transition dynamics and the rewards to build a rough plan of action. This M̃ problem can
thus be seen as a — rather drastic — variation of the “optimism in the face of uncertainty”

144

9.2. Evolution of decision intervals and actions by solving a sequence of discrete problems

philosophy developed in [Kaelbling, 1990].

Second step: searching for the optimal action. The second step consists in solving
the Bellman optimality equation corresponding to problem M̃ . We suppose there is a “black
box” discrete MDP solver available and we can feed the M̃ problem to this solver. This
optimization provides us with a π̃ policy defined on Σ̃.

It can happen that the policy defined on two consecutive decision intervals of the same
state ends up in pointing to the same action after the optimization process. In this case, we
merge the two decision intervals into one in order to keep the number of bounds low and
the representation as compact as possible. No new introduction of bounds is possible at this
step since we are only optimizing the discrete problem M̃ .

Third step: Evaluating π̃ on the real system. One can see π̃ as an approximation
of an optimal policy for M . It is not exactly a policy obtained through approximate dynamic
programming since it results from the “black box” solver used in step 2 — which might be
either an exact or an approximate solver, but its generation relies on an approximation of
the model which yields an exact or approximate value function on this approximate model,
which in turn provides us with π̃. Consequently, the π̃ policy leaves room for improvement
with respect to the continuous initial problem because the problem solved was a discrete
approximation of this initial problem. The goal of step 3 is to let the T discretization evolve
in order to let the next step’s π̃ be better than the current one, with respect to the continuous
temporal problem.

This leaves us with two separate problems:

• Suppose we have found the optimal policy π∗ for M then we have a partitioning set T ∗
used for this policy’s description and we can build the associated M̃∗ problem. Then,
to guarantee the soundness of our algorithm, we need to insure that the optimal policy
π̃ found after after optimization on the M̃∗ problem is identical to π∗.

• Secondly, the evaluation method of π̃ with respect to the continuous problem must
be good enough so as to eventually find the points in time where the policy can be
improved.

The first problem corresponds to proving that the overall approximation and optimiza-
tion scheme has a fixed point in π∗. Ideally, one should also prove it is a contraction mapping
in order to insure convergence. As for many approximate dynamic programming algorithms,
proving such a property is often very hard or impossible. For an example illustrating this
difficulty, see the discussion on approximate value iteration of section 6.4. However, proving
the stability (or bounding the variations) of π∗ through the model approximation and op-
timization steps provides a good criterion to evaluate the consistency of the approximation
method for generating M̃ .

Similarly, the evaluation of V π̃ can be done via several different methods. If exact com-
putation with the continuous functions of M is feasible, one could try a TMDPpoly -like
evaluation. Approaches such as Approximate Linear Programming (least-square minimiza-
tion of a vector of weights on feature functions) as in [Guestrin et al., 2004] or Monte-Carlo
approaches are also possible. Depending on the nature of the continuous problem at hand,
one could choose an option or another, the goal remains to obtain an evaluation of π̃’s quality
on the real continuous problem, ie. to solve equation 9.2 for π̃.

145

Chapter 9. Perspectives: evolutive partitioning of time

Fourth step: populating the decision intervals sets. Once we have the evaluation
V π̃, we need to answer the question “where should I introduce a new bound in order to
improve my policy’s quality?”. Answering this question actually means inferring that by
performing another action than the one specified by π̃, one improves the expected gain of
an execution. This idea is very close to the improvement step of Policy Iteration. Here,
one could consider that the decision variables are the decision intervals’ bounds and that we
search for new values of these bounds which will improve the efficiency of our policy. Hence,
we need to find where we can potentially improve the policy’s quality.

Evaluating such an improvement can be done by trying to find the best action to under-
take in the current state before applying π̃ for the rest of the execution. It corresponds to
calculating the one-step lookahead best action by performing one Bellman backup. There-
fore, we are looking, per state, for the greatest value of the Bellman error as a function of t.

We recall the definition of the Bellman error as presented in [Bertsekas and Tsitsiklis,
1996]. Let π be a policy defined on the state space of a discrete MDP. Let V π be π’s value
function. The Bellman error in state s is the value of the best improvement possible with a
one-step dynamic programming optimization of the policy:

BE(V π(s)) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

P (s, a, s′)V π(s′)

)
− V π(s) (9.6)

We define the Bellman t-error, in discrete state s, as the function of time representing
the gain obtained by optimizing the first action of an execution path, before applying the
current policy (or before receiving the value specified by the value function of the policy).
In a given discrete state s, the Bellman t-error with respect to value function V is given by:

BEs(t) = max
a∈A

(
r(s, a, t) +

∑
s′∈S

∫ ∞
−∞

γt
′−tV (s′, t′)P (s′|s, a, t)f(t′|s, t, a, s′)dt′

)
− V (s, t)

(9.7)
Finding and maximizing BEs(t) can either make use of analytical calculation if it is pos-

sible (in the TMDPpoly case, finding the supremum of a piecewise polynomial function is
an easy calculation). One can also make use of other optimization techniques such as local
convex optimization (gradient descent, Newton methods, evolutionary algorithms) depend-
ing on how much information we can extract from V π̃ (values, gradients, Hessian matrices,
etc.).

Let us consider the question of finding the largest Bellman error more precisely. For
notation convenience, we introduce the La operator for standard MDPs:

La(V)(s) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s) (9.8)

One can then write: ∀s ∈ S,LV (s) = max
a∈A

LaV (s).

Similarly, for SMDP+, we write:

Lta(V)(s, t) = r(s, a, t) +
∑
s′∈S

∫ ∞
−∞

γ(t′−t)V (s′, t′)P (s′|s, t, a)f(t′|s, t, a, s′)dt′ (9.9)

Consequently, we can write:

BEs(t) = max
a∈A

{
Lta (V π) (s, t)

}
− V π(s, t) (9.10)

146

9.2. Evolution of decision intervals and actions by solving a sequence of discrete problems

We are looking for sup
t∈R

BEs(t) but:

sup
t∈R

BEs(t) = sup
t∈R

max
a∈A

{
Lta(V

π)(s, t)− V π(s, t)
}

= max
a∈A

sup
t∈R

{
Lta(V

π)(s, t)− V π(s, t)
}

So we are left with |S| · |A| maximization problems where we want to solve:

sup
t∈R

{
Lta(V

π)(s, t)− V π(s, t)
}

(9.11)

t ∈ [0, T]

Then, depending on the shape of M ’s functions and of V π, we can try to apply different
optimization techniques. Gradient descent might generally be sufficient to find the possible
sup values.

9.2.3 Related work and conclusion

As mentioned earlier, this method differs from the algorithms presented in [Feng et al., 2004],
[Li and Littman, 2005] and [Benazera et al., 2005] (HAO*) because it does not search for
a local refining of a continuous variable’s partitioning, but for the smallest set of bounds
needed to define the policy on this variable.

Earlier work on this problem and on the problem of incremental discretization of con-
tinuous variables was proposed in [Munos and Moore, 2002] and [Munos and Moore, 2000].
The method proposed in the previous paragraph builds on the same idea to concentrate
accuracy where it is needed. However, the main difference lies in the fact that our method
sacrifices two aspects to obtain as little bounds as possible: optimality and causality. Op-
timality is lost because we pop some bounds out of the bounds’ list when two consecutive
actions are equal, thus implying a worse approximation in the discretized model than if we
had not removed these bounds. Causality in the discretized problem is lost because of the
approximation method, as explained at step 1 of the previous algorithm.

Lastly, one can push the comparison with policy iteration a little further. If one considers
the (t̃, π(s, T̃)) decision variables, the previous algorithm can be seen as a policy iteration
algorithm where the evaluation phase is an approximate evaluation of the policy using an
optimistic model obtained by discretization of the continuous problem and where the opti-
mization phase results from the discrete optimization for the actions and from the continuous
approximate optimization for the bounds’ evolution.

Finally:

The method presented in this chapter separates the decision intervals’ bounds op-
timization and the action selection procedure. It relies on an incremental method,
similar to the philosophy of policy iteration, to improve the bounds’ number and
values and on a discrete MDP resolution scheme to preserve the coupling between
these bounds and the optimized actions. This method could be implemented using
different tools for MDP optimization, model discretization and convex optimiza-
tions, providing a family of variants based on the same principle of incrementally
finding the right intervals for policy definition.

147

Chapter 9. Perspectives: evolutive partitioning of time

148

10
Conclusion

This chapter summarizes the results obtained in the previous chapters. We also
discuss the possibility of adapting the TMDPpoly method and tools to the more
general case of XMDPs with hybrid state and action spaces, highlighting where the
advantages and difficulties are. Finally we conclude on this first part of the thesis
and explain how it leads to the second part.

10.1 “Take-away” messages

This first part of the thesis focused on the problem of introducing a continuous time variable
in the MDP framework. This raised questions concerning the link with the discounted
criterion, the resolution algorithm and the formal representation framework of temporal
Markov decision problems. Here is a short summary of the conclusions drawn from the
previous chapters:

• Considering a continuous observable time variable implies looking at a hybrid state
space MDP. Furthermore, having an observable time directly affects the definition of
the discounted criterion.

• Introducing continuous variables such as time often calls for the introduction of con-
tinuous actions such as wait. This yields a hybrid action space MDP with hybrid state
space and observable time in the discounted criterion.

• The XMDP framework captures these characteristics and establishes an optimality
equations for the policies one could define on such problems. This XMDP framework
includes standard MDPs, SMDP+ and TMDPs.

• In practice, when time is the only continuous variable and wait the only continuous
action, some extra hypotheses can be made. Namely, wait is often deterministic with
respect to the states variables and the reward for a zero duration waiting is zero. This
falls into the framework of SMDP+. Sometimes wait might even have no impact on
the discrete part of the state space. This is the standard TMDP framework which we
slightly extended to deterministic effect on the state variables through the use of a W
function describing the deterministic evolution of the system while waiting.

• The optimality equations presented in [Boyan and Littman, 2001] for the TMDP frame-
work correspond to a total reward criterion for the equivalent XMDP.

149

Chapter 10. Conclusion

• Trying to extend the exact resolution scheme of TMDPs to the case of piecewise poly-
nomial functions is quickly refrained by the properties of formal calculations on such
representations. Namely, this exact resolution scheme could not be extended further
than discrete probability density functions, piecewise constant transition probabilities
and piecewise polynomial reward functions of degree lower than 5.

• The analysis of the TMDP optimality equations provided a more global approximate
resolution method for the case of piecewise polynomial functions, based on:

– Exact and approximate formal calculations on piecewise polynomial functions.

– Prioritized sweeping adapted to TMDPs.

– Approximate value iteration.

These features spawned the TMDPpoly algorithm and planner.

• The main drawback of value iteration methods for temporal Markov decision problems
comes from the difficulty to define precisely the value functions. In the case of piecewise
polynomial functions it is expressed through the number of definition intervals needed
to accurately describe the value functions. We provided a first attempt at simplifying
this representation by taking a short look into evolutive partitioning of time. This
resulted in a “policy iteration”-like method which contains the first ideas about the
model-free reinforcement learning methods of the thesis’ next part.

10.2 Perspectives

On top of the perspectives concerning the evolutive discretization of time presented in chapter
9, it is interesting to take a look at how the developments made for the TMDPpoly algorithm
and planner can apply to a more general class of MDP problems with hybrid action and state
spaces. More specifically, the question one could ask is: how could we adapt the TMDPpoly
algorithm to XMDPs?

Even though most of the bricks seem available, building the house is not straightforward.
There are several reasons for that. First of all, few methods have been developed in the liter-
ature to perform formal Bellman backups as we have done for piecewise polynomial TMDPs.
Generally, the option taken is either to solve a linear program trying to fit Vn+1 onto a
good set of feature functions, as in ALP or LSPI. The initial Neuro-Dynamic Programming
approach uses neural networks as a common representation of value functions, other recent
approaches deal with different kinds of estimators or regression operators, but — to our
knowledge — in most cases, the problem turns out to be similar to a supervised learning (or
fitting) problem. The search for an L-stable family of functions over which one could per-
form formal Bellman backups is a rather hard problem and has provided few results until now.

When one deals with several continuous variables on top of the discrete ones, finding a
good representation framework seems even harder. The case of piecewise constant or linear
function representations has been used in [Feng et al., 2004], [Li and Littman, 2005] and [Be-
nazera et al., 2005]. We can also mention an interesting alternative method using phase-type
distributions presented in [Marecki et al., 2006]. An XMDPpoly implementation could prob-
ably make good use of piecewise linear or constant functions, associated to discrete states,
as in [Benazera et al., 2005].

150

10.3. Opening

However, the main difficulty comes with the definition of continuous and hybrid actions.
With TMDPs, the optimization benefited a lot of the deterministic behaviour of wait and of
the fact that it was the only continuous action. This allowed the decoupling of equations as
illustrated by the proof (from XMDPs back to TMDPs) of section 8.4. In the general case,
one should solve the parametric formulation of dynamic programming presented in equation
8.15. In other words, one should separately find the optimal action parameters before com-
paring the actions together.

Here again, a good representation of the value functions might facilitate the search for
these optimal parameters. Action elimination procedures, as presented in [Puterman, 1994]
or used in [Mausam and Weld, 2006], can also reduce the amount of computation needed to
consider these hybrid actions.

Even though these approaches are not directly related to model-based MDP optimization,
one should also mention the recent work in Reinforcement Learning of [Hasselt and Wiering,
2007] or [Antos et al., 2007] on the topic of optimizing MDPs with continuous action spaces.

Finally, what makes most current MDP planners efficient are their search strategies.
Even though prioritized sweeping is an efficient way of ordering Bellman backups for com-
plete resolution of MDP problems, heuristic search provides an important efficiency gain for
the partial resolution of focused problems. Thus, depending on the kind of XMDP problems
one wishes to solve, an XMDP planner might not make use of dynamic programming steps
in the same fashion as the TMDPpoly planner.

To summarize these ideas, XMDPs and TMDPpoly open the door to a more general class
of methods for MDPs with hybrid state and action spaces, but:

• Finding a good representation for the value function will remain a hard problem for
which the piecewise polynomial representation clearly has limitations.

• Formal Bellman backups might be useful to solve the parametric formulation of dy-
namic programming (equation 8.15).

• These problems will still suffer from a somehow extended curse of dimensionality. This
implies action selection, heuristic and focused search and approximate methods will be
a critical issue.

10.3 Opening

By considering how this work could apply or be adapted to the generalized case of XMDPs
we already took a step back from the academic problem of TMDP optimization. Let us take
a second step away and consider the way our problem was stated in the first place.

Since the beginning of this first part, we considered that a model was explicitly available
to us and that we could approximate it, using some specific tools as, for example, discrete or
piecewise polynomial distributions or piecewise polynomial functions. However, in practice,
the difficulties encountered when dealing with the problems we tried to solve do not only
concern the design of efficient algorithms to solve them; they also leave a lot of work on the
task of writing them down in the first place.

151

Chapter 10. Conclusion

As for most classical MDP problems, writing the transition matrices or the transition
probability density functions is a task which requires a lot of engineering. Many of the sys-
tems we want to control are not easily described through an explicit probability distribution
simply because finding the exact shape or values of such a distribution is a hard task in
the first place. Let us take the subway example of chapter 2 for instance, where the state
variables would be the number of passengers at each station and in the trains, the current
position of each train and the time variable. Given a current state, the probability distribu-
tion on the next state requires a lot of engineering to be explicitly computed, while writing
a simulator for such a problem is a much simpler task.

This simple example illustrates the reason why we need to focus on representing and
formalizing complex stochastic temporal processes, in order to efficiently capture their be-
haviour and to design sound simulation systems.

Optimizing control policies without using an explicit model of the process, by exploiting
reward signals provided by the environment, is the field of study of Reinforcement Learning.
The second part of the thesis focuses on representing the complexity of temporal Markov
decision problems in order to build a generative model of the process. This generative model
is then used in conjunction with a simulation-based, approximate policy iteration method,
designed to exploit the observable time variable.

152

Part III

Controlling Time-dependent
Stochastic Systems with

Concurrent Exogenous Events

153

Overview

There is a number of ways to introduce this third part’s contents. The point of view we
develop here follows the global orientation of the thesis on temporal problems. At the end
of this overview, we will propose an alternative way of introducing and reading the following
chapters.

While the previous part focused on the inference of the optimal value function, given a
formal model of the process, and based on an analysis of the adapted Bellman operator for
time-dependent problems, this second part starts with the following admission of weakness:
such a formal model is often not available.

Physically, if one can suppose there exist underlying probability distributions describing
the behaviour of our systems, these distributions are often hard to obtain exactly. In a
sense, part II used this argument to justify our polynomial approximations. However, ap-
proximating a model implies having an explicit prior knowledge about its behavior. Real
world problems are often too complex to have an explicit — even approximate — implicit-
event, predictive model of the system.

This leads us to consider the question of planning without such an explicit predictive
model. For many real world problems, it is remarkably easier to build simulators than to
describe the system through synthetic, explicit equations. In other words, while predictive
models are hard to build, generative models are often available. The question of searching
for a policy through the interaction with a simulator is the field of Reinforcement Learning.

Temporal problems of decision under uncertainty fall into this category of complex plan-
ning domains for which a synthetic representation of the problem is often not available as a
single, explicit, stochastic decision process. We resolve to — at least in a first time — sacri-
fice the idea of finding an optimal policy; instead, we rather search for improvements of an
initial behavior by locally improving the agent’s policy in the most likely current situations.
Based on these ideas, the following chapters introduce a number of contributions related to
very different domains:

• Chapter 11 explores the question of analyzing the temporal problems’ complexity. It
illustrates the crucial contribution of concurrency to this complexity. It also establishes
a link between concurrent stochastic processes modeling and the discrete event systems
specification theory (DEVS, [Zeigler et al., 2000]). It finally extends this analysis to
decision processes. This provides a complete study of the temporal decision processes’
structure as well as an elegant method for compactly specifying temporal Markov
decision problems, based on the GSMDP model of [Younes and Simmons, 2004].

• Chapter 12 then focuses on the question of locally improving the agent’s behavior. This
question is strongly related to Policy Iteration approaches. We provide a complete
review of Policy Iteration, approximate Policy Iteration and asynchronous dynamic
programming in order to naturally introduce the idea of Real Time Policy Iteration
(RTPI) and relate it as much as possible to its parent ideas.

• In chapter 13 and 14 we introduce the Approximate Temporal Policy Iteration (ATPI)
algorithm. This algorithm is a specialization of RTPI to the case of temporal problems
with continuous action spaces. It brings together the simulation basis introduced in

155

chapter 11, the algorithmic method of chapter 12 and tools borrowed from the field
of Statistical Learning which are needed to adapt to the features of continuous state
spaces. In particular, the improved ATPI algorithm of chapter 14 introduces a notion
of confidence in the policy and value function, related to the problem of approaching
the sufficient statistics for the V π(s) and π(s) variables. This notion of confidence is
related to the exploration/exploitation compromise of Reinforcement Learning. It can
also be exploited as a new attempt to bring together heuristic search and exploration
in continuous state spaces.

Now that this first introduction has situated this second part’s contribution inside the
topic of temporal Markov decision problems, there is a second point of view which is im-
portant to consider. This point of view is directly related to the problem of searching for a
policy in a continuous, unstructured, high-dimensional state space.

Contrarily to the case of finite discrete state spaces, this family of problems regains one
fundamental property of real world continuous problems: there is a zero probability of vis-
iting the same state twice. Therefore, all methods based on rollout sampling for evaluation,
need — at least to some extent — to rely on a supplementary notion of local generalization.
This property of generalization — which applies both to the policy and the value function —
is an important feature of learning systems in general, which is somehow hidden in standard,
discrete state Reinforcement Learning and which is central in Statistical Learning theory.

Moreover, even though the state space might be unstructured, the problem itself often
exhibits a specific organization: some states can be grouped together, some regions can be
seen as similar from the point of view of the optimal policy, the value function, or the tran-
sition function. Discovering the structure of the problem, of the optimal value function, or
of the policy is a an important key to efficient reasoning in large, unstructured problems.
While Reinforcement Learning specializes in the online, dynamic improvement of an agent’s
behavior, Statistical Learning focuses on static structure analysis and abstraction. Hence,
establishing the link between Reinforcement Learning and Statistical Learning appears cru-
cial to build intelligent learning agents.

While the question of bridging the gap between the dynamic structure of Reinforcement
Learning and the static problems of Statistical Learning is beyond the scope of this thesis, the
problem appears fundamental for an autonomous agent operating in a continuous or hybrid
environment. In that matter, this thesis third part and the ATPI algorithm constitute an
attempt to build such a bridge in the case of temporal Markov decision problems.

156

11
Concurrency: an origin for complexity

Many temporal problems present a complex structure. Writing models or simulators
for such problems quickly becomes a huge engineering task, sometimes as difficult
as solving the decision problem itself. This chapter focuses on what appears to
be one of the main reasons for complexity of temporal problems: concurrency of
local phenomena. Efficient and compact representation of stochastic processes’
concurrency seems to be a key to tackling large, complex temporal problems. The
framework of Generalized Semi-Markov Processes (GMSPs) elegantly captures the
complexity of the global temporal process. After exploring the properties of GMSPs,
we investigate more precisely the question of modeling such stochastic processes in
the unified DEVS framework. Then we introduce action choice in GSMPs in order
to model the full problem of decision making under uncertainty with concurrent
exogenous events and observable continuous time.

11.1 The complexity of writing the model for stochastic temporal prob-
lems

Let us turn back to three of the examples presented in chapter 2, namely, the subway, the
airport and the coordination problems. All these three problems present some features in
common:

• They take place in a strongly time-dependent, stochastic environment.

• The decision problem has a limited number of initial states.

• Part of environment’s evolution is controllable through the agent’s actions but part of
it is not.

Modeling and analyzing the environment’s non-controllable behaviour already raises ques-
tions: does this process retain Markov’s property? Do we have to go through intensive anal-
ysis of each of the process’s variables to get an idea of the global process’ evolution? How
can we simply and compactly capture this behaviour?

One first remark concerning the time dependency of these problems is that time plays
a central role because it is one of the crucial, non-replenishable resources upon which the
processes depend. It could indeed be replaced by another equivalent variable. However we

157

Chapter 11. Concurrency: an origin for complexity

will keep using time as our “red line variable” for clarity.

The direct dependency of the process on time has been studied in the thesis’ first part
and it is not this explicit time dependency that is hard to model here. Indeed, when the
process depends only on time, then the overall problem turns to solving a hybrid variable
MDP problem as in the previous part. So the complexity of the examples’ behaviour does
not uniquely come from the time-dependency of the processes at hand.

What makes it hard to predict the next state of the process for the above examples is the
fact that these processes result from the local interaction of heterogeneous phenomena. If
we take the airport example: the probability that the process’ next state corresponds to the
arrival of plane p at terminal t is given by the probability of a movement’s success, provided
that there are no airports alarms triggering before this arrival, that the weather does not
change before this arrival, that another plane does not reach another terminal before this
arrival, etc. This simple example illustrates the fact that the complexity of writing the
transition model of such a discrete event process comes from one simple statement:

The overall process’ complexity results from the concurrent interaction of local
processes. These local processes are often simple time-dependent processes but
they are strongly coupled together via the values of the common state variables.

So what makes our problems hard to model is not really their time dependency; it is the
fact that they are the resulting process of multiple small processes, all coupled through the
state space. This coupling is strong in the sense that each individual process affects most
variables of the state space and, conversely, all processes outcomes depend on the current
global state. Hence, we need to make a distinction here with the weakly-coupled MDP frame-
work of [Dean and Lin, 1995; Meuleau et al., 1998; Bernstein and Zilberstein, 2001] which
has laid the basis of decomposition algorithms for MDPs. Such a decomposition is not possi-
ble here because of the strong coupling between concurrent processes through the state space.

Consequently, if we can find a modeling framework that captures both the local processes
and their coupling via the state space, then we will be able to compactly represent the
behaviour of the global system.

11.2 Generalized Semi-Markov Processes

In the stochastic processes literature, the resulting process of several concurrent temporal
processes is called a generalized process. The main example of such a process is the frame-
work of Generalized Semi-Markov Processes introduced by [Glynn, 1989]. These processes
were briefly introduced in chapter 2 and we provide more details here.

A GSMP represents the concurrent execution of several semi-Markov processes (SMPs).
All these processes have stochastic transition destinations and stochastic sojourn times.
Moreover, there is a strong coupling between the processes because they all affect the same
random variables. Consequently, the overall process is a discrete event process resulting from
the successive triggering of transitions in the different individual SMPs.

Formally, a GSMP is described by a set S of states and a set E of events. Each event can
be described as an independent semi-Markov process over the random variables of the state
space. At any time, the process is in a state s and there exists a subset Es of events that

158

11.2. Generalized Semi-Markov Processes

are called active or enabled. These events represent the different concurrent processes that
compete for the next transition. To each active event e, we associate a clock ce representing
the duration before this event triggers a transition as presented on figure 11.1. This duration
would be the sojourn time in state s if event e was the only active event and thus corresponds
to the associated SMP’s sojourn time in state s. The event e∗ with the smallest clock ce∗

(the first to trigger) is the one that takes the process to a new state. The transition is
then described by the transition model of the triggering event: the next state s′ is picked
according to the probability distribution Pe∗(s′|s). In the new state s′, events that are not
in Es′ are disabled (which actually implies setting their clocks to +∞). For the events of
Es′ , clocks are updated the following way:

• If e ∈ Es \ {e∗}, then ce ← ce − ce∗
• If e 6∈ Es or if e = e∗, pick ce according to Fe(τ |s′)

The first active event to trigger then takes the process to a new state where the above oper-
ations are repeated.

Definition (Generalized Semi-Markov Process, [Glynn, 1989]). A GSMP is given by the
4-tuple 〈S,E, F, P 〉, where:

• S is the set of possible values for the process’ state.

• E is the set of events describing the process. This set can be reduced to a subset Es of
active events in each state s.

• F is the cumulative distribution function giving the duration before an event triggers.
The duration τ before e triggers is drawn according to F (τ |s, e) = Fe(τ |s).
• P is the transition function of the process. When event e triggers, the new state s′ of

the process is drawn according to P (s′|s, e) = Pe(s′|s).

The framework of GSMPs could be compared with the (deterministic) framework of
Timed Automata introduced in [Alur and Dill, 1994] which uses a similar description of the
temporal behaviour of a system involving concurrency.

s1

Es1 : e2

e4

e5

e7

s2

Pe4 (s
′|s1)

Es2 : e2

e3

e7

Pe7 (s′|s2)

Figure 11.1: Illustration of a GSMP

A GSMP is an event-driven stochastic process, summarizing the concurrent effects
of several semi-Markov processes on a common state space.

159

Chapter 11. Concurrency: an origin for complexity

One can notice that — as in the SMP case — one can let the transition model depend
on the clock ce∗ , thus yielding a Pe∗(s′|s, ce∗) transition function.

Since GMSPs represent the overall process by factoring it through its separate concur-
rent events, it provides a much simpler description than a monolithic model of the global
process. In fact, each of the individual SMPs constituting the GMSP might have rather
simple transition and duration probability functions and thus can be easy to model. Writing
the corresponding GSMP avoids the heavy task of explicitly integrating all these concurrent
processes into one large, explicit stochastic process. The drawback of this situation is that
we do not have an explicit formalization of the overall process anymore but rather a compact
description of its dynamics.

Consequently — as exposed by Glynn in his introductory paper in 1989 — GMSPs pro-
vide both a “precise language for describing discrete event systems, and a mathematical
setting within which to analyze discrete event processes”; the core idea being to capture
the essential dynamical structure of a (stochastic) discrete event system. The analysis of
GMSPs clarifies the connections between continuous variable dynamic systems and discrete
event dynamic systems by considering GSMPs as event-driven stochastic processes.

The specialization of GSMPs to time-homogeneous sojourn times yields the time-homogeneous
GSMP setting which can be reduced and analyzed as a continuous time Markov chain and
thus as a standard Markov process through the operation of uniformization. This raises a
similar question for the general case of GSMPs: does the stochastic process corresponding
to the evolution of the SMPs’ common state space random variables s still retain Markov’s
property?

As for SMPs, the answer is no. It is rather straightforward to provide a physical ex-
planation to this: when considering the above process, defined on the common state space
random variables s — which we will call the natural process — from an external point of
view, an observer does not have enough information to predict which event will trigger next,
and hence, which is the probability distribution on the next state of the process. This also
implies the GSMP does not even retain the semi-Markov behaviour of the underlying SMPs.

In his 1998 paper, Nilsen presents an implementation of a GSMP modeling and simu-
lation tool (GMSim). In order to build the simulator’s underlying process, Nilsen uses the
supplementary variable technique (presented, for instance, in [Cox and Miller, 1965]) in order
to insure the semi-Markov behaviour of the global process, namely, to be able to predict the
future state by only looking at the current state. However, as expected from a collection
of SMPs, the sojourn times remain time inhomogeneous. The supplementary variable tech-
nique is used to construct an augmented state containing both the state of the natural process
(natural state) and the active events’ clocks. With this information, it is possible to write
the probability distribution on the next augmented state of the process without information
about its past history. We leave the notation details to [Nielsen, 1998] and simply conclude
that:

The stochastic process described by the natural state variables of a GSMP does
not retain the semi-Markov behaviour of the individual underlying semi-Markov
processes. By including the events’ clocks in an augmented state, we are able to
build a process over the random variables (s, c) which regains this semi-Markov
behaviour.

160

11.3. DEVS modeling

This last conclusion raises an important question concerning the systems we wish to con-
trol: is the augmented state observable to an external decision-maker? In other words: will
it be possible to re-use the results known for Markov or semi-Markov decision processes in
order to control GSMPs with action choice? Will we have a guarantee of an optimal Markov
policy? We leave this question for the next chapter but already underline the fact that in
most practical cases, only the natural state of the process is observable and the clocks are
generally unknown. A simple example to illustrate this fact is the “roads crossing” example:
suppose the agent is a car driver arriving at a multiple crossing with traffic lights, he can
observe the current natural state of the process (the lights) but cannot predict which one
will turn green first because he cannot observe the individual processes’ clocks.

Figure 11.2: Hard to predict which will turn green first.
(Picture credit: http://www.greenwichup.org.uk)

Finally, GMSPs seem to be an elegant, compact and efficient way of describing the
complexity of temporal stochastic processes, especially if we include time as an observable
continuous state variable. We will focus on this last point in the next chapter also, as we
will introduce time and action choice alltogether in the problem. For now, we remain in
the discrete event dynamic systems modeling problematic and try to make a link between
GSMPs and the general DEVS modeling framework.

11.3 DEVS modeling

11.3.1 Five levels of Discrete Events Systems Specification

In [Zeigler, 1976], B. P. Zeigler proposes to describe the notion of system through a formal
specification. This formal specification depends on the level of refinement in the system’s
description. He describes five levels of description going from uninterpreted input-output
system specification to a complete specification of the system dynamics through the notions
of internal state, internal transition function, external transition function and model cou-
pling. These levels of specification rely heavily on the notion of discrete event system. He
applies the fifth (and most detailed) level of specification to isolate the core components of a
discrete event system and design the Discrete EVent system Specification (DEVS) framework

161

Chapter 11. Concurrency: an origin for complexity

which is built to capture the modeling of any discrete event system.

Discrete event systems find an expression through different formalisms such as finite au-
tomata, Petri nets, state charts, cellular automata or stochastic processes for instance. Many
of these formalisms have been studied and mapped to the DEVS framework. This makes
DEVS more than a high-level description of the behaviour of discrete event systems: it cap-
tures the notion of consistent multi-modeling and of models integration. Consequently, it
provides a sound theoretical basis for the study of discrete event systems modeling, coupling
and simulation.

We use this section to introduce the basic notions of DEVS modeling in order to write
GSMPs as DEVS models in the next section. This presentation is a pragmatic view of DEVS
modeling, for a more formal presentation and a more detailed description, please see [Zeigler,
1976] and [Zeigler et al., 2000].

11.3.2 Atomic models

DEVS models are composed of atomic models describing independent processes, eventually
coupled together through a hierarchical notion of coupled models. The idea of DEVS mod-
eling is to capture the basic elements of a discrete event system’s behaviour through the
minimal concepts of evolution functions and variables. The atomic DEVS model builds on
the idea of the black box having input and output ports.

Definition (Atomic DEVS model, [Zeigler, 1976]). An atomic DEVS model is described by
the 8-tuple 〈X,Y, S, δext, δint, δcon, λ, ta〉:
• X, a set of input ports and their associated value domains,

• Y , a set of output ports and values,

• S, a set of internal states,

• δext : S × X → S, an external transition function, describing the evolution of the
model’s internal state when an external event occurs on one of the input ports,

• δint : S → S, an internal transition function, describing the natural evolution of the
model’s internal state,

• δcon : S ×X → S, a transition conflict function, specifying the behaviour in case of a
conflict between an internal and an external event (usually chooses to use δint or δext),

• λ : S → Y , an output function, updating the values on the output ports,

• ta : S → R+, a “time advance” function, used to schedule the time of the next transi-
tion to a new internal state.

A port-based DEVS model can be represented as on figure 11.3.

It is important to lift the terminology ambiguity between DEVS external and internal
events and GSMP events. DEVS internal events correspond to changes inside an atomic
model. DEVS external events can be seen as messages, travelling between DEVS models.

162

11.3. DEVS modeling

model M

pin
n , vin

n

...pin
0 , vin

0

XM

pout
m , vout

m

...pout
0 , vout

0

YM

Figure 11.3: DEVS atomic model with ports

They are events that are emitted towards the other models, thus allowing model coupling.
Hence, these events correspond to changes on the input ports of connected models. GSMP
events are somehow a miscalling: they point to distinct processes triggering the discrete
events that condition the evolution of the global system.

The temporal execution of a DEVS model can be described as follows. Initially, model
M is in an internal state s ∈ SM . The ta function is called to determine how long the system
should remain in this state. If no external event arrives on an input port, at time ta(s), the
δint function is called and the system evolves to state s′ = δint(s). Then the output function
λ is called and the output ports Y are set to the value of λ(s). ta is called again to find
the next undisturbed transition date ta(s′). If an exogenous event with a vector v of values
occurs in XM before time ta(s′), then the model’s state changes according to δext. The next
state is s′′ = δext(s′, v). The output function is not called since there was no internal transi-
tion and the ta function is immediately called to get the new undisturbed transition time for
the model ta(s′′). If no other exogenous event has occurred at ta(s′′), then, as previously, δint
determines the next step of the process, λ sets the output ports’ values and ta is called again.

Since DEVS models are event-driven models, they do not rely on a notion of synchroniza-
tion on a common time. Therefore, there is no notion of time step and the models evolutions
are asynchronous (they are simply coupled through the emission and reception of events).
However, in order to define a sound behaviour, one has to plan the possibility of an external
event arriving exactly at the transition time specified by ta. In this case, the δcon function
resolves the conflict: δcon(s, v) determines the new state (usually by choosing to call either
δint or δext)1. Similarly to δext, when δcon is called, the output function is not called (this
behaviour can be regained by introducing intermediate volatile states).

This describes the individual behaviour of an atomic DEVS model. But the DEVS
framework is also meant to authorize the parallel execution and interaction of several dif-
ferent models. This is where the multimodeling problematic arises: sometimes one needs
to represent the discrete event process resulting from different processes where each can be
specified in a different formalism (for instance, one could be described as a Petri net, an-
other as a discrete time differential equation and a third as a cellular automata). Interfacing
all these models in the DEVS framework corresponds to introducing the notion of coupling
between models.

1It is important to note that defining the δcon function as a function of the internal state s and the input
port values v allows to consider several external events and one internal event occurring at the same time,
thus guaranteeing the behaviour’s consistency even with multiple concurrent DEVS events. The same remark
holds for δext.

163

Chapter 11. Concurrency: an origin for complexity

11.3.3 Coupled models

A coupled DEVS model defines how individual models are coupled together in order to form
a high-level macro-model. This macro-model can itself be part of a coupled model, etc.

In a coupled model (also called “network of models”), there is no additional notion of
state than the abstract aggregate state of all individual models and these states remain pri-
vate to each model. We provide a general definition of a coupled DEVS model. For a more
formal definition, see [Zeigler et al., 2000].

Definition (Coupled DEVS model, [Zeigler et al., 2000]). A coupled DEVS model is given
by:

• a set of models,

• a set of input ports collecting incoming external events,

• a set of output ports emitting events,

• a set of connections between the coupled model’s input and output ports and the indi-
vidual model’s input and output ports.

Graphically, one can represent a coupled model as on figure 11.4.

in
out1

out2

A

in1

in2

out

B
in out

Figure 11.4: Coupled DEVS model

A lot of extensions to DEVS modeling have been developed during the last thirty years
as, for instance, Cell-DEVS, which establishes a direct mapping from cellular automata to
DEVS models, or DS-DEVS, allowing dynamic structure change in coupled DEVS models.

One can make a strong parallel between DEVS modeling and discrete-time asynchronous
multi-agent modeling since an atomic DEVS model can be seen as an autonomous entity,
owning a private state and sharing information with other models through events in a network
of local connections between models. This actually highlights the main feature that will be
problematic in the next section: a model’s state is internal to the model and cannot be
shared without emitting events, even for coupled models.

164

11.4. GSMPs and DEVS models

11.3.4 Abstract graphical representation

We adopt a graphical convention to represent the internal dynamics of a DEVS model. In
this convention, a model is a box with its name in the upper left corner. The internal state
— or only the abstract, relevant part of this state — is represented as circular nodes. The
ta function in a given abstract state is shown in the lower half of the node, while the upper
half displays the node’s name. Internal transitions are shown as solid arcs between nodes.
External transitions are represented using dashed arcs. Finally, the output function associ-
ated to an internal transition is shown using a solid arrow starting on the transition’s arc.
All the atomic DEVS models represented in the rest of the thesis follow this convention, as,
for example, on figure 11.5(b).

11.4 GSMPs and DEVS models

The DEVS methodology has become a rather important modeling and simulation formal-
ism partly because of its generality and simplicity. The last decades saw its expansion in a
number of different directions. However, there are few results, both on the formalism side
and on the implementation side, for the extension to stochastic processes. Some work has
been done by [Melamed, 1976] and [Ahn and Kim, 1993] about mapping Markov chains to
the DEVS framework, and [Joslyn, 1996] provides a nice analysis of the different aspects of
qualitative DEVS models (deterministic, stochastic, possibilistic, fuzzy, . . .) and their link
with finite automata.

In this last section, we focus on trying to extract the discrete event system characteristics
of GSMPs in order to map them to DEVS models.

The first intuition on the link between GSMPs and DEVS models is to map each con-
current entity in the GSMP framework to its DEVS counterpart. Namely, the idea would be
to map each of the individual semi-Markov processes to a separate DEVS model. Since each
of these SMPs captures the dynamics of one event, the global DEVS model turns out to be
a DEVS representation with one atomic model per event. However, one crucial difference
kicks in at this point. While all the SMPs of a GSMP depend on the same shared random
variables, independent DEVS models have independent state spaces. Therefore, writing a
GSMP as a collection of DEVS models, each representing an event, implies performing a
synchronization operation between models on all the variables representing the state space.

The first architecture one can consider in order to represent GSMPs as DEVS models
necessitates to define an observer which synchronizes the state among events. The idea of
such an observer is to act as the “real world”, being affected by the happening of events and
back-propagating its state to the events’ models.

In this architecture, each event holds a copy of the process’s state variables s, or — in a
more memory-efficient version — only the variables on which it depends and the variables it
affects. Then, each event can be represented graphically as a model with a single abstract
internal state. To avoid confusion, we will write s the natural state of the GSMP and se the
internal state of model Me, corresponding to event e. The state variables se of model Me

correspond to the ones of s (or only the fraction of variables related to e) plus the current
clock of event e. The ta function of such a model corresponds to picking a sojourn time
according to Fe(s) and ce. If ce is equal to zero, the time is picked according to Fe(s). If

165

Chapter 11. Concurrency: an origin for complexity

ce is not equal to zero it means another event has been triggered and the observer has sent
an update message concerning s, the new ce is updated accordingly. The internal transition
function corresponds to picking the next values of the state variables according to Pe(s′|s, ce).
The external transition function updates the internal state according to any incoming event
from the observer. Finally, the output function generates a DEVS event containing the in-
formation about the new state2. The event model is represented on figure 11.5(a).

Me

δint :pik(Pe(s′|s, ce))
δext :

s′ = opy(x)

ta(se)

ta : pik(Fe(ce|s)) with GSMP rulesse
λ

(a) Graphical model of the GSMP
event in DEVS

Mobs state
∞update0

δext :
s′ = opy(x)

λ

(b) Graphical model of the GSMP
state observer in DEVS

Figure 11.5: DEVS atomic models for GSMPs

Similarly, one needs to define the observer model. This model holds an internal state
describing the real state s of the global process. Graphically, one can represent this model
with an abstract two states model as represented on figure 11.5(b). The first abstract state
called “state” is an idle position, in this state ta =∞ and the model waits for an incoming
exogenous DEVS event. The other “update” state is a volatile state (its ta is always equal
to zero) which serves to send the DEVS event corresponding to the update of s to all Me

models. Consequently, the Mobs model only changes the s state upon reception of DEVS
events sent by the Me models: its external transition function consists in copying the values
of the state variables received into the internal state. When in abstract state “update”, the
Mobs model instantaneously returns to “state” and uses λ to emit the current process’ state
s. The global architecture is summarized on figure 11.6.

Even though this representation is a sound mapping from GSMPs to DEVS models, it
provides a rather bad simulator. The reason for that is the amount of communication needed
between models for state synchronization; directly inherited from the complexity of strongly
coupled processes. Highly communicating DEVS models yield rather inefficient simulators
because they loose the distributed nature of DEVS models.

It is somehow possible to simplify the representation presented on figure 11.6. The first
simplification we can introduce to reduce the communication load between models is — as
mentioned in the above paragraphs — to only send to a model the set of variables it depends
on and to only receive the set of variables it affects. This idea is rather close to the description
of transition functions as dynamic Bayesian network introduced by [Dean and Kanazawa,

2This actually implies introducing an extra intermediate volatile state since λ is a function of se and not
s′e. But we do not mention it for clarity purposes.

166

11.4. GSMPs and DEVS models

Mobs

Me1

Me1...
Me1

Figure 11.6: Coupled DEVS model for GSMPs

1990] for compact representation of transition models. But this simple optimization does
not significantly reduce the communication load.

A second simplification consists in getting rid of the observer and directly connecting the
output ports of the Me models to the input ports of other Me models. In this case, the state
is not centralized is an observer anymore but it is still consistent as long as the connection
graph remains equivalent to the version with the observer. The global state of the process
then needs to be collected from the different models. However, this last simplification implies
building a complex connection graph by analyzing processes’ effects and dependencies.

Finally, it appears that:

Because GSMPs represent processes that are coupled through a common state
space, writing a distributed, coupled DEVS model equivalent to a GSMP nec-
essarily implies redundancy in the storage of state variables and yields a coarse
communication network (connection graph) between models.

This analysis of GSMPs underline why their global behaviour appears complex, while
their atomic elements remain simple. This lays the foundations for sound design of GSMP
simulation engines and their coupling with other discrete event formalisms.

Consequently, if one wishes to implement a GSMP extension to a DEVS simulation
engine, he has the choice of either building the safe coupled model presented above, or
designing an atomic model which fully implements the GSMP behaviour. The Virtual Labo-
ratory Environment platform (VLE, [Quesnel et al., 2007]) is a software and an Application
Programming Interface (API) which supports multimodeling and simulation by implement-
ing the DEVS abstract simulator. VLE is oriented toward the integration of heterogeneous
formalisms as those presented earlier. Furthermore, VLE is able to integrate specific models
developed in most popular programming languages into one single multimodel. We designed
and implemented the GSMP extension to the VLE multimodeling and simulation platform
using the option of designing an atomic model interface for GSMPs. This extension has also
a stochastic decision process version, implementing the concepts of GSMDPs which will be
presented in the next section, thus making a first attempt at coupling results from the field
of discrete event simulation and the theory of simulation-based decision optimization.

167

Chapter 11. Concurrency: an origin for complexity

11.5 MDPs, continuous time and concurrency

The first part of this chapter focused on modeling and simulating concurrent stochastic
processes. This analysis needs to be considered under the light of decision theoretic planning:
our goal is to design sound simulations of such processes in order to evaluate the choices of
different actions in the systems they represent. In this section, we introduce the possibility
of partially controlling the global process through action choice in GSMPs, building the
Generalized Semi-Markov Decision Processes (GSMDP) framework. We highlight the main
difficulty when dealing with GSMDPs: since the natural process does not retain Markov’s
property, there is no guarantee of optimality on Markovian policies. We discuss how to
deal with this last point. We finally make time observable to the decision maker for time-
dependent problems and, as in the previous part of the thesis, consider the impact such a
choice on the problem definition.

11.5.1 Generalized Semi-Markov Decision Processes

Introducing action choice in GSMPs was first proposed by [Younes and Simmons, 2004] in
the Generalized Semi-Markov Decision Process (GSMDP) framework. Moving from GSMPs
to GSMDPs consists in separating the events into two categories: controllable and non-
controllable. We identify a subset A of controllable events or actions. The remaining events
are called non-controllable or exogenous events. Actions are events that can be activated or
deactivated at will and the subset As = A∩Es of activable actions in state s is never empty
since it always contains at least the a∞ idle action.

Definition (GSMDP, [Younes and Simmons, 2004]). A GSMDP is a GSMP where some
events are defined as controllable. At each decision epoch, a controller agent can activate or
deactivate these events at will. Similarly to a a GSMP, a GSMDP is given by:

• its state space S,

• its event space E among which one distinguishes between uncontrollable and controllable
events. The controllable events are called actions and their subset is noted A,

• its duration F and transition P functions,

• and finally a reward model given per event, specifying a lump sum reward ke and a
reward rate ce, similarly to the SMDP case.

This new definition of idleness is both consistent with the analysis developed in chapter 4
and with the intuitive physical meaning of performing no action. The a∞ action always has
its clock set to +∞ and thus is never the first event to trigger change in the global process.
Therefore, it really corresponds to letting the non-controllable, exogenous events naturally
take the process to a new state. Because its clock is always set to +∞, there is no need to
define the transition model of action a∞. By convention, we will write that this transition
model is deterministic and does not change the state.

A GSMDP’s execution follows the same rules as a GSMP. At any step of the process, all
active events plus the current chosen action a have an associated clock value. The smallest
clock determines the triggering event, which takes the process to state s′. In s′, the decision-
maker has the following choices:

168

11.5. MDPs, continuous time and concurrency

• If a ∈ As′ he can choose to leave a active. In this case, the action continues concurrently
with all exogenous events. It is treated as any other active event, its clock being
decremented by the previous ce∗ .

• He can also choose to change the current action to a′. He has to do so if a 6∈ As′ , but
he can also choose to change actions. In this case, a is deactivated and a new clock is
drawn for a′.

To summarize, at each state change, the decision-maker is asked to choose an action in As.
Once this action is chosen, it is dealt with just as any other active event.

GSMDPs are GSMPs where one distinguishes between controllable events (actions)
and non-controllable (exogenous) events, leaving the choice of activating the actions
to the decision-maker.

One can notice that only one action can be active at a time. Two important comments
need to be made on this point. First, this does not prevent parallel action triggering. Of
course, one could relax the previous hypothesis of only one active action at a time and allow
for n active actions at a time (n might be unbounded). But without relaxing this hypothesis,
concurrent actions are still possible. For example, we could allow for activation of only one
action at a time but this activation would have a clock reading of zero which would authorize
the decision-maker to chain other action activations right after as long as he wishes. When
he does not want to activate anymore actions, then he activates a∞ and the process’ time
increases again. The main problem in this case lies in the number of combinations of acti-
vated actions / states. For a complete study of discrete-time steps, concurrent actions in the
MDP case, we refer the reader to [Mausam and Weld, 2005; Mausam, 2007; Mausam and
Weld, 2007].

The second comment underlines the fact that authorizing only one action activation at
a time actually corresponds to saying that the agent focuses only on one thing at a time.
But this does not prevent parallel execution: actions can trigger non-controllable events
representing the action’s effects or the action’s execution which are considered exogenous
because the agent is not monitoring them anymore (because it is focusing on the new action
activation) and cannot stop them unless we introduce specific stopping actions (which takes
us back to the first comment).

Consequently, the “one active action at a time” hypothesis is not a strong restriction
on the model. It could nevertheless be relaxed but would yield a more complex problem
because of the combinatorial growth of the action space. We will keep the above hypothesis
and declare that only one action is active at a time3.

Finally, as we briefly made the parallel between GSMPs and finite timed automata, we
can make a similar link between their decision counterparts: GSMDPs and Timed Game
Automata [Bouyer et al., 2004].

3Future work on dealing with concurrent events and actions in GSMDPs is an interesting line of research
since the problem happens quite often in real life. Merging the results of [Mausam, 2007] on action pruning
and heuristic search with the GSMDP formulation and optimization algorithms is — in my opinion — a
promising approach.

169

Chapter 11. Concurrency: an origin for complexity

11.5.2 Controlling GSMDPs

As in the MDP case, searching for control strategies on GSMDP implies defining rewards
r(s, e) or r(s, e, s′) associated to transitions and introducing policies and criteria.

The same characteristics arise with GSMDP than in the GMSP case: the transition
function for the global semi-Markov process does not retain Markov’s property without aug-
menting the state space. In other words, only the augmented process is Markovian, the
natural process is not. In the classical MDP framework, one can make use of the transition
function’s Markov’s property to prove that there exists a Markovian policy (depending only
on the current state) which is at least as good as any history-dependent policy (Cf. [Put-
erman, 1994]). In the GSMDP case however, this is no longer possible because the natural
process is not Markovian.

In order to define criteria and to find optimal policies, we need — in the general case
— to allow the policy to depend on the whole execution path of the process. [Younes and
Simmons, 2004] define execution paths for a GSMDPs. An execution path of length n from
natural state s0 to state sn is a sequence ρ = (s0, t0, e0, s1, . . . , sn−1, tn−1, en−1, sn) where ti
is the sojourn time in state si before event ei triggers. As in [Younes and Simmons, 2004],
we define the discounted value of ρ by:

V π
γ (ρ) =

n−1∑
i=0

γTi
(
γtik(si, ei, si+1) +

∫ ti

0
γtc(si, ei)dt

)
(11.1)

where k and c are traditional SMDP lump sum reward and reward rate functions4, and
Ti =

∑i−1
j=0 tj .

One can then define the expected value of policy π in state s as the expectation
over all execution paths starting in s:

V π
γ (s) = Eπs

[
V π
γ (ρ)

]
(11.2)

This provides a criterion for evaluating policies. The goal is now to find policies that
maximize this criterion. The main problem here is that it is hard to search the space of
history-dependent policies. So the simplest solution would be to make our process Marko-
vian again by using the supplementary variable technique and then to search for an optimal
policy in the space of Markovian policies defined over the augmented state space.

Using the supplementary variable technique consists in augmenting the natural state
space with just enough variables so that the distribution over future augmented states only
depends on the current values of these variables. As in [Nielsen, 1998], we can augment the
natural state s of the process with all the clock readings and show that this operation brings
Markov behavior back to the GSMDP process. We will note this augmented state space
(s, c) for convenience.

Unfortunately, as foreseen at the end of the previous section, it is unrealistic to define
policies over this augmented state space since clock readings contain information about the
future of the system. From here, several options are possible:

4see equation 2.26 for details on k and c.

170

11.5. MDPs, continuous time and concurrency

• One could decide to sacrifice optimality and to search for “good” policies among a
restricted set of policies, for example the policies defined on the current natural state
only.

• One could also search for representation hypothesis that simplify the GSMDP model
and that make natural state Markovian again.

• One could compute optimal policies on the augmented state space (s, c) and then derive
a policy on observable variables only.

• Finally, one could look for a set of observable variables which retain Markov’s property
for the process, for example the set composed of the natural state of the process s, the
duration for which each active event ei has been active τi and its activation state si.
We will note this augmented state (s, τ, sa).

This series of options leads to consider the question of observability in the stochastic
process. Namely, it is important to know which variables are observable and what prior
knowledge we have concerning the relationship between observations and the real state of
the process. The field of Partially Observable MDPs (POMDPs, [Kaelbling et al., 1998])
studies this question in detail. We won’t enter the question of partial observability in MDPs
here and will consider the natural state to be fully observable.

The optimization approach taken by [Younes and Simmons, 2004] is based on the second
option listed above. Namely, the authors approximate any distribution on time by a chain of
exponential distributions called a phase-type distribution. These distributions, as presented
in [Neuts, 1981], allow to fit any number of known moments of a prior distribution using only
chains of exponential distributions. Once this approximation is made, they introduce extra
states for the intermediate steps (the phases) corresponding to the inner states of the chains.
Using the memoryless property of exponential distributions, this brings the GSMDP back to
a time-homogeneous continuous time MDP (CTMDP). Then, they perform uniformization,
as in [Puterman, 1994], in order to transform the CTMDP into a standard MDP which can
be solved using standard discrete MDP methods.

This approach necessitates to be able to approximate the duration functions with phase-
type distributions. On top of that, it is limited to discrete natural states. We wish to avoid
— as much as possible — making hypothesis on the model itself and on the underlying
distributions. Moreover, many of the variables we will consider are continuous variables
or a mix of continuous and discrete variables. We also need, for the problems at hand, to
consider methods for policy search which can handle state spaces with large dimensions. Con-
sequently, in the list above, we will look for a solution corresponding either to option 1, 3 or 4.

171

Chapter 11. Concurrency: an origin for complexity

Because of the non-Markov behaviour of GSMDPs’ natural process, there is no
guarantee that there exists an optimal policy verifying Markov’s property. On the
other hand, searching for a policy in the space of history-dependent policies is not
an acceptable solution. Hence, one needs to make a choice between:
• Sacrificing optimality by restricting the policy search space.

• Finding the correct minimal number of observable variables to add to the
natural process in order to regain Markov behaviour.

• Constructing policies on non-observable variables and then use a priori knowl-
edge to derive policies on observable variables.

11.5.3 Introducing continuous observable time in GSMDPs

Finally we need one more brick to build the modeling part of concurrent, time-dependent
stochastic decision processes. We need to reintroduce continuous observable time into the
process.

This operation is quite straightforward. Suppose that our GSMDP has a state space
including the continuous observable time variable. Then the GSMDP events affect this time
variable as any other variable and time increments correspond to the clock readings of the
triggering events.

The only problem lies in the definition of the criterion. As with TMDPs, we should check
that Bellman’s equation is still valid. But we know that the augmented state’s stochastic
process retains Markov property (as for GSMPs). So when we include continuous observable
time, the global process turns to an XMDP and the results of chapter 8 apply. Consequently,
optimizing a policy on the augmented state process of a GSMDP turns to optimizing a policy
on an XMDP. Finally, we can safely use the standard Bellman equation since GSMDPs with
observable time are simply equivalent to XMDPs with a hidden part of the state.

In general, as for a GSMP, the augmented state space is not observable and we know that
natural process does not retain Markov’s property. Therefore, we are left with the options
listed in the previous paragraph.

11.6 Conclusion

All this chapter has been devoted to capturing the complexity of temporal stochastic deci-
sion processes. We put a special emphasis on concurrency because it appears to be a major
modeling obstacle for temporal systems. Recent articles in the planning community, such
as [Cushing et al., 2007] for instance, point out similar conclusions as to the importance of
concurrency and the notion of decision time for discrete event systems.

Finally, we conclude that GSMDPs with continuous observable time are an elegant and
efficient framework for capturing compactly the dynamics of problems such as the coordi-
nation, the subway or the airport management problems. These problems present other
characteristics which make the idea of building a full, explicit model, unpractical: they have
many variables, inducing a high-dimensional state space, some of these variables are discrete,
others are continuous, these problems have a finite (eventually sliding) horizon. Furthermore,
the overall behaviour of the stochastic processes described by GSMPs or GSMDPs does not

172

11.6. Conclusion

retain Markov’s property.

Concerning this last point, we make the hypothesis that knowing the exact values of the
clocks is not crucial to building good policy. This hypothesis comes from the fact that if the
general values of clocks are small compared to the horizon, then the absolute time-dependency
will have more influence on the optimal policy than the values of clocks. Therefore, if our
hypothesis is relevant, we can try to find policies defined over the natural state space even
if the associated process is not Markovian anymore.

The difficulty of writing a synthetic model for such processes leads to another conclusion.
Standard inference of a policy from the explicit model becomes very hard in the cases at
hand because of the difficulty to obtain this explicit model and then the difficulty to extract
information from it. Therefore, instead of relying on standard MDP techniques, we turn
to Reinforcement Learning techniques and choose to use our GSMDP representation as a
generative model to simulate and evaluate policies in order to learn a good controller.

This approach is one of the core ideas of the next chapters.

173

Chapter 11. Concurrency: an origin for complexity

174

12
Real-Time Policy Iteration

The idea of performing direct policy search, using the sound simulation basis intro-
duced in the previous chapter for Monte-Carlo policy evaluation, is closely related
to the algorithm of Policy Iteration. We leave the GSMDP framework for a while
as we introduce an algorithm which holds the essential properties of the method
presented in the next chapters. As seen through the previous example of Prioritized
Sweeping, Dynamic Programming becomes really efficient when cleverly guided in
its exploration of the search space. Real-Time Dynamic Programming (RTDP,
[Barto et al., 1995]) is one of the most efficient family of algorithms designed to
solve MDPs. It relies on heuristic guidance and on asynchronous updates of the
value function. After reviewing the basis of Asynchronous Dynamic Programming,
we introduce a Policy Iteration version of RTDP which we call Real-Time Policy It-
eration (RTPI). While RTDP and its variants are all based on Asynchronous Value
Iteration, RTPI searches for a solution directly in policy space.

It can seem odd to abruptly introduce such a chapter. There is indeed no continuity be-
tween the previous chapter’s ideas and this one. Actually, from a chronological point of view,
this chapter should come last in the thesis since it is the abstraction and the generalization
of the Approximate Temporal Policy Iteration (ATPI) algorithm which will be introduced
later in the document. However, ATPI is designed for Temporal Markov Decision Problems
and will result from putting together a whole set of ideas, methodologies and algorithms.
Among these ideas, one will find the one of incrementally building local policies, with an
optimization procedure guided by greedy simulations and updates. This idea is independent
of the planning domain at hand (temporal problems) and the global presentation of the the-
sis becomes easier when separate ideas are presented separately. Furthermore, the idea of
Real-Time Policy Iteration goes beyond the scope of the thesis and deserves an independent
chapter alone. Therefore, this chapter will introduce the general idea of the Real-Time Policy
Iteration algorithm in the general MDP case. This algorithm is inspired by a single intuition:

In an incremental, direct policy search algorithm, given an initial state or a set
of possible initial states, to obtain efficient and quick policy improvements, the
relevant states for policy update are the ones we are likely to encounter during
execution of the current policy, ie. the ones visited by policy simulation.

This idea is very close to the idea behind the Asynchronous Value Iteration RTDP algorithm,
thus providing the name of RTPI.

175

Chapter 12. Real-Time Policy Iteration

The progression of ideas in this chapter is as follows. We start by reviewing the idea of
asynchronous Bellman backups in section 12.1 and focus more specifically on Policy Iteration.
This leads us to discuss the question of approximation in Policy Iteration in section 12.2.
Then we get back to our main point: we review the greedy exploration algorithm of RTDP
in section 12.3 and show how we can build such a simulation-based algorithm with the RTPI
method of section 12.4.

12.1 Asynchronous Dynamic Programming

For brevity, we do not recall in detail the Value Iteration and Policy Iteration algorithms
which were presented in chapter 2. The goal of this first section is to introduce the notion
of Asynchronous Dynamic Programming, to provide a first illustration before focusing on
Asynchronous Policy Iteration and finally to show which questions it raises.

12.1.1 Origins of Asynchronous Dynamic Programming

The bottomline idea of Asynchronous Dynamic Programming is the fact that ([Bertsekas
and Tsitsiklis, 1996]):

As long as every state is chosen for Bellman backups infinitely often, the overall
value function converges to V ∗.

These Bellman backups can be performed in value function space (Asynchronous Value
Iteration) or in policy space (Asynchronous Policy Iteration). The initial idea for asyn-
chronous dynamic programming underlined the possibility to use parallel computation to
reduce calculation time. Illustrating the local aspect of Bellman backups and the indepen-
dence of convergence properties on state ordering was crucial for this purpose. Later, the
idea of using specific ordering for state updates spawned a whole family of algorithms.

Section 6.3 already introduced asynchronous value iteration as a specific asynchronous
dynamic programming algorithm. This fundamental result underlines the fact that the or-
dering of Bellman backups has little importance as long as they cover the whole state space
infinitely often (as the number of iterations tends to +∞). In other words, since we know
that standard value or policy iteration converges within an ε bound of the optimum in a cer-
tain number of state updates with a given ordering of these updates, asynchronous dynamic
programming expresses the fact that this number of updates can be reduced by finding the
right ordering on states.

Prioritized Sweeping is a backward asynchronous dynamic programming method. It prop-
agates the change information from children states to their parents, defining priorities based
on the amplitude of this change. Therefore, it focuses the optimization on back-propagation
of rewards to the whole state space. Reversely, one could take the problem differently, by
working from an initial state and trying to focus on states that are likely to lead to the goal.
This other approach is related to forward dynamic programming search1 and we will focus

1One could build an adapted version of Prioritized Sweeping which heuristically updates states according
to their distance to the start states. This implies biasing the priorities, using a balance between real priorities
and a notion of distance to the initial state. To the best of our knowledge, this option has not been explored
in the framework of Prioritized Sweeping. Similar approaches of backward-forward heuristic search for MDPs
were investigated in [Teichteil-Königsbuch and Infantes, 2008] for example and these algorithms benefit largely
of their heuristic guidance. Their analysis is beyond the scope of this chapter.

176

12.1. Asynchronous Dynamic Programming

on this feature in section 12.3.

12.1.2 Asynchronous Policy Iteration

Reinforcement Learning borrowed many of its initial intuitions to the learning behavior of
living species, trying to mimic the learning process induced by sequences of trial and errors.
In particular, we, as humans, usually keep track of our behavior (policy) instead of its ex-
pected reward (value function), even though we have a rough idea of what our behavior is
worth. Therefore, we perform some sort of direct policy reinforcement, changing our behav-
ior when it seems that a new action can improve our “expected gain”. This idea underlies
the approach of Policy Iteration which we review throughout this chapter.

We first recall the basics of the Policy Iteration algorithm and highlight its main draw-
back: the evaluation phase. We postpone the discussion considering the set of approximate
evaluation methods for the policy, defining variants of Approximate Policy Iteration to sec-
tion 12.2. Instead, we first focus on the specification of an Asynchronous Policy Iteration
algorithm.

Let us start with a reminder on Policy Iteration.

Reminder on Policy Iteration

Policy Iteration (Cf. [Bertsekas and Tsitsiklis, 1996; Puterman, 1994]) is a dynamic pro-
gramming method which operates directly in policy space. It can be summarized by saying
that if one has a current policy πn and is able to exactly evaluate the expected gain V πn

of this policy in every state of the process, then performing a Bellman backup in state s
with respect to V πn corresponds to finding a better or equivalent action a in s than the one
specified by πn(s). Therefore, replacing πn(s) by a yields a new policy πn+1 which has a
better or equivalent expected reward. Consequently, Policy Iteration jumps from policy to
policy in the policy space and from value functions to better value functions in the value
function space.

We recall below the Policy Iteration algorithm as presented in algorithm 2.2. It alternates
two phases: the policy evaluation phase and the improvement phase. The evaluation phase
consists in evaluating exactly the policy’s value function V πn (without any optimization).
The improvement phase sweeps through the state space, updating the action in every single
state by performing a Bellman backup based on V πn , and builds the new policy πn+1.

Evaluating the policy can be done in a number of ways. For example, one can use the
Value Iteration algorithm without the maximization step (namely, using the Lπ operator
instead of L) in order to build a sequence of functions converging to V π. Organizing the
Bellman backups and focusing on relevant states was actually the first idea behind the pri-
oritized sweeping method of [Moore and Atkeson, 1993] since it was first introduced for
Markov prediction problems and later extended to Markov decision tasks. Another option
consists in performing explicit matrix inversion in order to solve the linear system of equa-
tions V π = LπV π. This kind of resolution can exploit the fact that transition matrices are
generally rather sparse, thus allowing significant improvements in matrix inversion.

177

Chapter 12. Real-Time Policy Iteration

Algorithm 12.1: Policy Iteration
π0 ∈ D
n← 0
repeat

Solve the system of |S| equations:
∀s ∈ S Vn(s) = r(s, πn(s)) + γ

∑
s′∈S p(s

′|s, πn(s))Vn(s′)
for s ∈ S do

πn+1(s)← argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)Vn(s′)
)

n← n+ 1
until πn = πn−1

return Vn,πn

However, the evaluation phase usually remains the bottleneck for most Policy Iter-
ation methods.

Therefore, one often uses Approximate Policy Iteration which allows for faster approximate
evaluation and despite the lack of theoretical guarantees. We discuss this question in section
12.2.

Asynchronous Policy Iteration

Dynamic Programming is not limited to Value Iteration. Building an Asynchronous Policy
Iteration algorithm seems a little more complicated in the first place because of the two
distinct phases of the standard Policy Iteration Algorithm. We use this section to review the
idea of asynchronism in Policy Iteration.

In the following paragraphs, we will make the — rather drastic — assumption that there
exists a black box which quickly evaluates the policy’s value function. This assumption is
made for clarity of presentation and we will discuss it along with the Approximate Policy
Iteration methods in the next sections.

The algorithm of Modified Policy Iteration provides a smooth transition from Policy It-
eration to Asynchronous Policy Iteration. It builds on the idea that one can use other value
functions than the evaluation of πn to find πn+1 as long as the value function used respects
some properties. Namely, the evaluation phase of Modified Policy Iteration at iteration n
consists in performing mn times the Vk+1 = Lπn+1Vk operation in order to approach V πn+1 .
[Puterman, 1994] shows that Modified Policy Iteration converges for any non-zero value of
mn.

Because of the alternance of evaluation / improvement phases, Policy Iteration seems
to be a Synchronous Dynamic Programming method by nature. Introducing asynchronism
in Policy Iteration implies allowing these two phases to mix, therefore performing partial
evaluation and partial improvements of the policy. The case of Modified Policy Iteration is
a good illustration of the fact that Asynchronous Policy Iteration necessarily relies on some
sort of approximation in the policy’s value function. In the case of Modified Policy Iteration,
this approximation has no impact on optimality while with less conservative approximation
methods it might necessitate the error bounds of Approximate Policy Iteration.

178

12.2. Approximation for Policy Iteration

As for Value Iteration, Policy Iteration can be made more efficient when the local Bellman
backups are performed asynchronously and in a relevant order.

[Bertsekas and Tsitsiklis, 1996] lay the basis of Asynchronous Policy Iteration. At
iteration n, we select a subset Sn of S and perform a policy Bellman backup on all
s ∈ Sn. This yields policy πn+1 with:

πn+1(s) =

{
argmax
a∈A

r(s, a) + γ
∑
s∈S

P (s′|s, a)V πn(s′) if s ∈ Sn
πn(s) if s 6∈ Sn

(12.1)

One can also similarly perform a certain number of Vk+1 = LπnVk operations to
update the value function on the states of Sn.

Hence, if one alternates one policy update and one value function update then the latter
is equivalent to a Value Iteration update over the Sn states. Similarly, if the number of value
function updates is unbounded, we obtain the standard Policy Iteration method. Finally,
if we alternate one policy update and mn value function updates, we obtain the Modified
Policy Iteration algorithm.

[Bertsekas and Tsitsiklis, 1996] prove that if the initial policy and value function verify
V0 ≤ Lπ0V0 and if value function and policy updates are performed infinitely often in all
states as n tends to +∞, then Vn converges to V ∗ and the policy converges to an optimal
policy.

Finally, one can see Asynchronous Policy Iteration as an elegant way of formulating both
Value and Policy Iteration algorithms. It also naturally introduces the use of approximate
value functions for V π and helps distinguishing between “conservative” methods (Modi-
fied Policy Iteration, matrix inversion) and “less conservative” methods (approximate policy
evaluation) to analyze convergence and optimality. Asynchronous Policy Iteration can be
similarly presented from the point of view of actor-critic architectures.

12.2 Approximation for Policy Iteration

We have mentioned several times the possibility — and sometimes the need — for approx-
imate policy evaluation methods. This section discusses the drastic assumption we made
earlier about the existence of an evaluation black box and presents the different architec-
tures of Approximate Policy Iteration.

12.2.1 Why Policy Iteration?

Let us start with a common sense question: why would one prefer a Policy Iteration method
to a Value Iteration one? There is no particular reason for the choice of Policy Iteration
against Value Iteration in general. Experience shows that exact Policy Iteration might con-
verge in less iterations but more time (because of the evaluation phases) than Value Iteration,
but this rule of thumb does not always apply and the time taken by the evaluation phase
quickly becomes prohibitive.

Value Iteration methods have also received more attention in the Planning community
because of their efficient representation of reward-to-go functions and the ease of manipula-
tion of value functions. These value functions often have good properties, such as convexity,

179

Chapter 12. Real-Time Policy Iteration

monotonous evolution across the iterations, etc. On top of that, using value functions as a
unified way of storing information facilitates the construction of asynchronous methods for
value function optimization and allows to use results from heuristic search.

However, in order to make problems tractable, one often turns towards approximation
schemes. Part II is a good illustration of how value functions can be more complex objects
than policies. [Anderson, 2000] analyses why approximating a policy can be easier than
approximating a value function. By comparing Q-learning (Cf. [Watkins, 1989]) and the
direct gradient algorithm of [Baxter and Bartlett, 1999], both based on neural networks
approximators, Anderson presents an example where Q-learning oscillates between the op-
timal policy and a suboptimal policy, while the direct policy search method converges to
the optimal policy. As mentioned in the conclusion of the above paper, such an illustration
does not support any general conclusion about the relative merits of policy-only versus value
functions methods.

However, it suggests that it might be relevant to examine the complexity of approx-
imating value functions or policies for the problem at hand in order to choose the
way we represent the agent’s strategy.

Since value functions often hold more information than policies, they might be harder to
approximate with good enough granularity. Dedicating the resources of a function approx-
imator to representing relevant and irrelevant value function variations can be useless with
respect to the final policy and can lead to non-convergence of algorithms or degradation of
good policies.

Policy Iteration is basically an algorithm which explicitly stores the policy. However, it
is often used in conjunction with value function storage, in order to facilitate policy evalu-
ation. This feature of being both a policy and value function based algorithm yields Policy
Iteration’s robustness (the ability to actually find a good policy) but also its long execu-
tion time because of the alternance of updates on the policy and value function. While
the optimization is performed directly on the policy, it needs to be propagated to the value
function during the evaluation phase, yielding the drawbacks of Policy Iteration methods.
Section 12.1.2’s analysis of Asynchronous Policy Iteration underlined even more the coupling
between value function and policy.

For the arguments presented above and similarly to the first ideas of chapter 9, our
approach has turned towards approximate Policy Iteration methods and towards direct im-
provement of the decision variables.

12.2.2 Convergence of Approximate Policy Iteration

As mentioned earlier, exact Policy Iteration converges in practice in less iterations than Value
Iteration but usually takes more time because of the evaluation phase’s computational cost.
Thus, as for Value Iteration, it is common to use approximation schemes for this evaluation
phase. This approximation’s goal is to reduce the complexity of a policy’s evaluation while
still trying to fit its value function as closely as possible.

180

12.2. Approximation for Policy Iteration

Similarly to the Value Iteration case, one has a few results for Approximate Policy It-
eration. The first of these results being that, for the same reason as presented in section
6.4:

Approximate Policy Iteration usually does not converge.

Depending on the approximation’s quality, the first iterations yield a close-to-optimal
policy which then oscillates around the optimal policy. The previous section’s argument
was that this policy might oscillate “less” than the approximate value function itself and
therefore is more robust to approximation.

In the case of discounted problems, [Bertsekas and Tsitsiklis, 1996] show that if we write
the approximation error (the critic’s error) as:

∃ε ∈ R+ / ∀f ∈ F(S,R), ‖Ap(f)− f‖∞ ≤ ε (12.2)

then we can write equation 12.3.

For discounted problems, one can bound the optimality loss due to approximation
by:

lim sup
k→∞

‖V ∗ − V πk‖ ≤ 2γε
(1− γ)2

(12.3)

We can even be a little more precise and write that:

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤ 2γ
(1− γ)2

(
sup
j≤k
‖Ap(V πj)− V πj‖∞

)
(12.4)

In the case of undiscounted Stochastic Shortest Path problems, a similar bound exists,
provided that ε is small enough. To establish this bound, one needs to introduce the ρπ
quantity defined in equation 12.5. This ρπ is the maximum probability that the process is
in a non-goal state s after |S| steps of applying π, starting in a non-goal state.

ρπ = max
s 6∈GoalStates

Pr(s|S| 6∈ GoalStates|s0 = s, π) (12.5)

If we consider the sequence of policies generated by the Approximate Policy Iteration
algorithm, we can introduce ρk:

ρk = sup
j≤k

ρπj (12.6)

And similarly, for all proper policies, ie. for all policies such that ρπ < 1 (policies that
eventually lead to the goal with probability one), one can define ρ:

ρ = sup
π∈ProperPolicies

ρπ (12.7)

Since, for ε small enough, all policies are proper (Cf. [Bertsekas and Tsitsiklis, 1996]),
one can write:

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤ 2|S| (1− ρ+ |S|) ε
(1− ρ)2

(12.8)

The results from [Munos, 2003] generalize these results to the case of weighted quadratic
norms. This is of crucial interest since many approximation techniques for value functions
solve a regression problem defined in terms of L2 norms2.

2A good counter-example is provided in [Guestrin et al., 2001], where an L∞ norm is used.

181

Chapter 12. Real-Time Policy Iteration

12.2.3 Approximation methods

Linear approximation architectures

A first set of Approximate Policy Iteration methods can be grouped under the name of
“feature-based approximations” or, most commonly “linear approximation architectures”.
Even though all regression methods are more or less related to feature-based representa-
tions, this specific category uses a predefined finite set of feature functions. The idea is to
represent the value function as a linear combination of features and thus to project the value
functions (or the Q-functions) onto the subspace spanned by the features as illustrated by
equation 12.9.

V π(s) =
k∑
i=1

wπi φi(s) (12.9)

The fixed degree polynomial approximations of part II fall into this category but not the
piecewise polynomial approximation since one cannot exhibit a finite basis for the space of
bounded degree piecewise polynomial functions. The linear approximation architecture has
been used for instance in the Least-Squares Temporal Difference Learning (LSTD, [Bradtke
and Barto, 1996]) algorithm for prediction tasks. This same method inspired the evaluation
phase of the Least-Squares Policy Iteration (LSPI, [Lagoudakis and Parr, 2003]) algorithm.
An other example of a direct linear approximation architecture is the approach of Approx-
imate Linear Programming (ALP, see [Hauskrecht and Kveton, 2004] for example) which
can be used for policy optimization or simply policy evaluation. These approaches provide
a robust evaluation phase and help build efficient Policy Iteration algorithms, both from the
model-based (planning) and the model-free (learning) point of view. Their main drawback
lies in feature selection as pointed out by [Kveton and Hauskrecht, 2006]. The two next
families of algorithms try to overcome this difficulty.

Simulation-based methods

We distinguish a second family of methods which we could call “Monte-Carlo methods” or
“simulation-based methods” in the sense that they do not rely on a value function approx-
imation architecture but on direct simulation and sampling to obtain an evaluation of the
considered random variables. It is important to note that the families of algorithms we
distinguish are closely related to each other: our point is not to categorize and separate
algorithms but to provide a structured review of existing approximation methods. For in-
stance, the LSTDQ evaluation in LSPI relies on the reusability of samples generated from
the exploration versus exploitation trade-off. Monte-Carlo methods make extensive use of
generative models, ie. suppose that generating samples and experience can be done at a very
low cost.

Simulation-based approaches are quite close to the online approaches of RTDP or LAO*.
The algorithm of [Kearns et al., 2002] for instance explores the reachable states from a
current state s by simulating N times each action and repeating until a certain depth H.
This recursively defines value functions for horizon 1 to horizon H. Then, the best action
found in s is returned. This method is however quickly handicapped by the complexity of
breadth-first search and it is hard to reach sufficiently large values of H and N to guarantee
optimality and convergence. A more focused alternative is what [Bertsekas and Tsitsiklis,
1996] presents as simulation-based policy evaluation. It consists in calculating all Qπ-values

182

12.3. Heuristic forward search for Asynchronous Value Iteration

of actions starting in s by simulating a followed by the current policy until a certain horizon
and then returning the action corresponding to the best Q-value. This was exploited in the
Rollout method of [Tesauro and Galerpin, 1997]. These results were also analyzed in [Péret
and Garcia, 2003; Péret and Garcia, 2004; Péret, 2004] and can be reused for any evaluation
phase or for simulation-based Value Iteration.

The question of simulation and sampling for multistage adaptive algorithms was intro-
duced also in [Bertsekas and Tsitsiklis, 1996]. The idea is — similarly to [Kearns et al., 2002]
— to solve an m-stage look-ahead problem and to use the result in the online setting, ie.
to only apply the action found for the current state s. Recent work of [Chang et al., 2007]
shades a different light on this topic and makes the link with population-based evolutionary
approaches.

Structured representation methods

The last category of methods we distinguish is related to the idea of compactly representing
the value function through an efficient approximation architecture. Again this approach is
related to the previous families of algorithms since it builds on the same idea as the linear
approximation architecture but tries to build structured representations which do not de-
pend on features (or automatically learn the features) and that adapt to samples.

Among such structured representations, one can mention methods based on trees and
especially randomized trees as in [Ernst et al., 2005]. [Whiteson and Stone, 2006] explores
the use of evolutionary functions for Reinforcement Learning. Finally, [Ormoneit and Sen,
2002] adapts the Bellman equation to approximate kernel-based representations and shows
how regression methods applied to Reinforcement Learning are subject to estimation biases.

All these methods provide a panel of approximation and regression techniques to
evaluate policy’s values. The choice among these techniques (and eventually oth-
ers) depends on the application at hand and is closely related to the question of
dynamically learning the structure of the problem, the value function and the policy.

Such techniques can be used independently or in conjunction with Approximate Policy
Iteration. All use the bounds defined in [Bertsekas and Tsitsiklis, 1996] and [Munos, 2003],
proving that Approximate Policy Iteration is a sound direct-policy search method.

12.3 Heuristic forward search for Asynchronous Value Iteration

In section 12.1.1, we mentioned the possibility to build an Asynchronous Value Iteration
algorithm by focusing the value functions updates on the states which are likely to lead to
the goal. This forward search approach starts from the initial state and tries to work its way
towards the goal, relying on an initial heuristic guidance.

12.3.1 Real-Time Dynamic Programming

Real-Time Dynamic Programming (RTDP) was introduced by [Barto et al., 1995], based on
this last idea of forward search in the state space. It is comparable to [Korf, 1990]’s LRTA*

183

Chapter 12. Real-Time Policy Iteration

algorithm.

RTDP is a Value Iteration algorithm which tries to optimize a policy for an MDP
given an initial state and a heuristic value function.

RTDP starts with an initial state and a heuristic function which is used to initialize the
value function. The repeated operation of RTDP can be summarized as:

• In state s, perform one Bellman backup with respect to the current value function of
children states.

• Update V (s) and apply the best action found to reach s′.

• Repeat in s′.

More specifically: the class of problems RTDP was first designed for are the undiscounted
stochastic shortest path problems. The algorithm itself is defined in terms of trials. An RTDP
run is composed of a sequence of trials, each starting in the initial state s0 and ending in a
goal state. An RTDP trial is the result of the above operations as presented on algorithm
12.2. Namely:

In each state s, one performs a Bellman backup, updating the Q-values, choosing
the best action a to perform and updating the value function in s. Then, the next
state to update is picked according to the distribution P (s′|s, a). Whenever a goal
state is encountered, a new trial is started.

Algorithm 12.2: Real Time Dynamic Programming
RTDP(state s, value function h)

V (s)← h(s)
repeat RTDPtrial(s) until convergence of the value function

RTDPtrial(state s)
while s 6∈ GoalStates do

a← argmax
a∈A

r(s, a) +
∑
s′∈S

P (s′|s, a) · s′.value

s.value ← s.Qvalue(a)
s← pickNextState(s, a)

[Barto et al., 1995] call relevant states the states reachable from s0 by an optimal policy.
[Bonet and Geffner, 2003b] restrict this definition to the states reachable from s0 with the
unique optimal policy; this policy being defined by adding a static ordering on actions in
order to bring out a single policy out of the set of optimal policies. If the goal is reachable
from every state of the process and if the heuristic used is admissible (ie. is an upper bound
of the optimal value function), then one has the following results:

• Vn(s) is a monotonous, decreasing sequence.

• RTDP trials terminate in a finite number of steps (Cf. [Bertsekas and Tsitsiklis, 1996]).

• Vn(s) eventually converges to V ∗(s) in all relevant states.

184

12.3. Heuristic forward search for Asynchronous Value Iteration

The first and third above properties illustrate the Value Iteration oriented nature of
RTDP.

This notion of relevant state is crucial to improving the effectiveness of dynamic pro-
gramming methods in practice. Many problems described as MDPs present very large state
spaces, suffering from Bellman’s curse of dimensionality, while in the end, the execution of an
optimal policy, given an initial state, only visits a small subset of the state space. Therefore:

For problems where the initial state is known, finding these relevant states and
organizing dynamic programming passes so that these states are updated often is
a crucial step towards convergence speed-up.

In other words, finding the relevant states in forward search dynamic programming is
similar to finding to highest priority state in backward search algorithms such as prioritized
sweeping. It corresponds in the end to letting the optimization adapt to the structure of the
problem and to prior heuristic knowledge about the domain if such knowledge is available.
This is basically what RTDP does by letting the best action found so far in state s guide the
choice of the next state s′ to update.

RTDP suffers from the problem of asymptotic convergence. The number of trials needed
to reach V ∗ is not bounded. For example, unprobable states are rarely visited because RTDP
focuses on states that are likely to be encountered. Therefore, termination of RTDP is usu-
ally given in terms of finding an ε-optimal policy over the relevant states or in the initial
state. This termination usually uses the criterion of having a Bellman residual smaller than ε.

12.3.2 Labeled RTDP: asynchronous backward-forward Dynamic Programming

As [Bonet and Geffner, 2003b] and [Bonet and Geffner, 2003a] point out, RTDP has a very
good anytime behaviour, it quickly finds good policies, provided that it was initialized with
a good heuristic. However, the smooth improvement of this policy and the final convergence
are slow. This is a consequence of RTDP’s exploration strategy: greedy simulation. Greedy
simulation focuses on states which are likely to be encountered, therefore quickly yielding a
good policy. But the finer improvement of this policy implies considering states that are less
likely to be visited. Hence, RTDP is handicapped by the same feature that gave it its good
anytime behaviour.

In order to improve the exploration strategy, several options are possible. Q-learning or
TD-learning for example (Cf. [Watkins, 1989; Watkins and Dayan, 1992; Sutton, 1995; Sut-
ton and Barto, 1998]) introduce noise in action choice. Labeled RTDP (lRTDP), introduced
by [Bonet and Geffner, 2003b], take a different approach: they keep track of the states having
converged by labeling them and letting RTDP focus on the rest of the state space. A state is
said to have converged, or to be solved, whenever the associated Bellman residual is smaller
than a given ε. Since the most likely states will be found and updated often very early in an
RTDP run, it leaves all the further computing resources available for the convergence of the
other, less probable states.

Labeled RTDP works on the same idea as RTDP. An lRTDP run includes repeating
lRTDP trials until the initial state is labeled as having converged as shown on algorithm
12.3. An lRTDP trial is — similarly to the RTDP case — a trajectory in the state space

185

Chapter 12. Real-Time Policy Iteration

where successive states are updated and where the transition from a state to another is
conditioned by the updated greedy action.

lRTDP trials are not only stopped when a goal state is reached: they can also be
stopped earlier if a state labeled as having converged is encountered. This allows
to avoid spending time updating states for which an ε-optimal value function has
already been found.

In a sense, it is very similar to putting priorities on the states as in Prioritized Sweeping.

At the end of each trial, the stack of visited states is unpiled and the CheckSolved proce-
dure is called for each of them. The idea of this procedure is to construct the greedy envelope
for a given state, up to a certain depth corresponding to the first states having a Bellman
residual larger than ε. This greedy envelope in state s is the set of all reachable states from
s with the current greedy policy. These states are the nodes of what [Bonet and Geffner,
2003b] call the greedy graph. CheckSolved does not really build the full greedy envelope:
instead it performs a Depth First Search in the greedy graph in order to find all the fringe
states having a residual greater than ε. Whenever such a state is found, its siblings are not
checked (the node is not expanded) and itself is put in the “closed” stack, thus avoiding the
complete exploration of the greedy graph. These states are the fringe states which are not
solved yet in the reachable graph from s. If all states in the greedy envelope have a Bellman
residual of less than ε, they are labeled accordingly as solved and CheckSolved returns true.
Else, the procedure updates the value function in each of the states in the “closed” stack
and CheckSolved returns false.

Since CheckSolved is called in reverse order of visit (it is called on the last visited state
first) it means it tries to label these last states as solved first. If it does not succeed, at least it
performs an additional update in the unsolved fringe states of “closed” before returning false.

Therefore, CheckSolved acts as a backward propagation method trying to let the
states that are closer to the goals converge first. Thus, with the trials acting as a
forward search propagation and the CheckSolved procedure focusing on backward
dynamic programming updates, lRTDP is a complete forward-backward algorithm.
On top of that, the labeling procedure avoids spending extra time on solved states,
thus allowing the algorithm to focus on less probable states and to converge in a
bounded number of trials.

As soon as a state returns false when CheckSolved is called on it, the sequence of
CheckSolved calls is stopped and a new trial is entered.

12.3.3 Related approaches and extensions

lRTDP is by many ways comparable to the LAO* algorithm of [Hansen and Zilberstein,
2001]. Recent variants of RTDP include the HDP algorithm of [Bonet and Geffner, 2003a],
Focused Dynamic Programming of [Ferguson and Stentz, 2004], Bounded RTDP of [McMa-
han et al., 2005] and Focused RTDP of [Smith and Simmons, 2006]. It is interesting to
note that planners built on the heuristic search ideas of RTDP and on reachability analysis
with structured (forward-backward) update propagation provide most of the state-of-the-art
MDP planners, as for example [Teichteil-Königsbuch and Infantes, 2008] (winner of the 2008
International Planning Competition, probabilistic track).

186

12.3. Heuristic forward search for Asynchronous Value Iteration

Algorithm 12.3: Labeled Real Time Dynamic Programming
lRTDP(state s, value function h, float ε)

V (s)← h(s)
repeat lRTDPtrial(s, ε) until s.solved

lRTDPtrial(state s, float ε)
visited = ∅
while ¬s.solved do /* Play a trajectory */

visited.push(s)
if s ∈ GoalStates then break
a← argmax

a∈A
r(s, a) +

∑
s′∈S

P (s′|s, a) · s′.value

s.value ← s.Qvalue(a)
s← pickNextState(s, a)

while ¬visited.empty() do /* Unpile the visited stack */
s = visited.pop()
if ¬CheckSolved(s, ε) then break

CheckSolved(state s, float ε)
solved = true
open = ∅
closed = ∅
if ¬s.solved then open.push(s)
while open 6= ∅ do /* Build the closed stack */

s = open.pop()
closed.push(s)
if s.residual > ε then solved = false; /* Found an unsolved state */
else

a← argmax
a∈A

r(s, a) +
∑
s′∈S

P (s′|s, a) · s′.value /* Expand state */

foreach s′ such that P (s′|s, a) > 0 do
if ¬s′.solved ∧ s′ 6∈ {open ∪ closed} then open.push(s′)

if solved = true then /* All the greedy graph is solved */
foreach s′ ∈ closed do s′.solved= true

else
while closed 6= ∅ do /* Update unsolved states */

s = closed.pop()
a← argmax

a∈A
r(s, a) +

∑
s′∈S

P (s′|s, a) · s′.value

s.value ← s.Qvalue(a)

return solved

187

Chapter 12. Real-Time Policy Iteration

12.4 Real Time Policy Iteration

Having swept through the Policy Iteration family of methods in sections 12.1 and 12.2, we
can now try to adapt the greedy simulation guidance of RTDP to a Policy Iteration frame-
work which would retain the base properties of Asynchronous Policy Iteration and make use
of the Approximate Policy Iteration results.

12.4.1 Using greedy simulation to select Sn

The crucial steps of Asynchronous Policy Iteration are the choice of the Sn subset and the
decision to switch from policy improvement to policy evaluation. If we completely rely on a
policy evaluation black box, then the choice of Sn alone becomes predominant. Seen from
this point of view, one can see RTDP as an Asynchronous Value or Policy3 Iteration method
where Sn is chosen by simulating the greedy policy obtained so far.

Applying the greedy policy simulation idea to the selection of the Sn subset for
undiscounted stochastic shortest path problems provides the first idea of the Real-
Time Policy Iteration algorithm presented in algorithm 12.4.

Algorithm 12.4: Real-Time Policy Iteration
RTPI(state s, policy π)

repeat RTPItrial(s) until convergence of the policy

RTPItrial(state s)
while s 6∈ GoalStates do

s.updateQvalues()
π(s)← argmax

a∈A
s.Qvalue(a)

s← pickNextState(s, π(s))

This RTPI algorithm relies on greedy simulation to select the Sn subset but neglects the
problem of policy evaluation. Actually, it presents the problem slightly differently: instead
of requiring the expected current value of policy π, RTPI looks for the expected Q-value
of action a, in state s, with policy π. This leaves us with a number of possibilities for this
evaluation black box. This decoupling between policy improvement and policy evaluation is
to be related to the actor-critic architecture [Sutton and Barto, 1998]: the actor of RTPI
uses greedy simulation to select the states to update, while the critic can be implemented in
an independent way.

The straightforward calculation of Qπ(s, a) can be done through direct calculation of V π

at each step, using matrix inversion or prioritized sweeping for example4. In this case, the
updateQvalues() function first updates V π and then calculates the Q-values:

Qπ(s, a) = r(s, a) +
∑
s′∈S

P (s′|s, a)V π(s′) (12.10)

3Asynchronous Value Iteration is a special case of Asynchronous Policy Iteration which alternates single
passes of policy update and value function update on Sn as explained in section 12.1.2.

4The latter should probably be preferred since — for discounted criteria — local changes in the policy have
a local impact on the value function which locally propagates to other states. The extent of this propagation
depends partly on the value of γ.

188

12.4. Real Time Policy Iteration

This way of computing Qπ is consistent with the initial idea of [Bertsekas and Tsitsiklis,
1996]: one could have two independent real-time threads in the optimization program, one
for the actor, one for the critic. The actor performs greedy exploration with respect to the
latest V π available and asks regularly for specific values of V π to calculate the Qπ values.
In the meanwhile, the critic permanently updates its evaluation of V π, based on the latest
policy available. This way, there is no fixed number of iterations of each procedure but
simply an interleaving of the actor and the critic execution which uses the most up-to-date
information for the Asynchronous Policy Iteration scheme of RTPI.

One can also choose to only update the value function once at the beginning of each
trial instead of updating it at each state update. In this case, RTPI uses an approximate
value function in the same way as Modified Policy Iteration. This is particularly pertinent
for time-dependent problems as the next section will illustrate.

Then, different approximation schemes for policy evaluation can be used. Projecting the
value function on a subspace of features and performing linear regression among these fea-
tures borrows to the evaluation phase of Approximate Linear Programming (ALP, [Guestrin
et al., 2004; Kveton and Hauskrecht, 2006; Hauskrecht and Kveton, 2006]). The idea of Least
Squares Policy Iteration (LSPI, [Lagoudakis and Parr, 2003]) is similar and uses LSTDQ as
the approximation phase. Similarly, by using a generative model one can perform Monte-
Carlo evaluation to directly obtain the Qπ(s, a) values, as in Simulation-based Policy Itera-
tion of [Bertsekas and Tsitsiklis, 1996].

Finally, heuristic guidance for RTPI can be provided by either a value function (in this
case the considered policy is greedy with respect to this value function) or by an initial
policy. Different features for value function approximation and heuristic evaluation and
guidance can be combined to build an efficient evaluation phase. For example one could
combine Monte-Carlo sampling with UCB-based bounds (Cf. [Auer et al., 2002; Kocsis and
Szepesvari, 2006; Coquelin and Munos, 2007]) to perform both efficient greedy simulation
guidance and admissible policy evaluation.

12.4.2 Evaluating π, the specific case of time-dependent problems

The specific case of time-dependent problems can take advantage of its structure for RTPI
runs. Having an explicit continuous time included in the state space implies respecting
causality in the transition functions. Therefore, the only transition allowed are transitions
to states which have the same current time or a posterior time. Loops in the state space are
possible but since, in practice, an infinite number of instantaneous transitions has probability
zero, the possibility of an infinite loop is excluded for time-dependent problems.

This has important consequences on the resolution. The previous case of TMDPs illus-
trated that since we have a limited knowledge of time-dependency and since time is explicitly
included in the state space, it makes sense (under some hypotheses) to consider total reward
criteria.

189

Chapter 12. Real-Time Policy Iteration

Consequently, since we cannot loop to the past — we only make transitions to the
future and the present, since we have total reward criterion and since we are per-
forming forward search exploration of the state space, we can deduce that updating
the policy in state s during a trial will not change the policy’s value function in the
next state s′. The only exception to this rule is for instantaneous transitions.

Thus, we can consider the value function calculated at the beginning of each trial as valid
all along the run, even when the policy is updated.

12.5 Conclusion

Presenting the idea of RTPI in a separate chapter was important because its application
reaches beyond the scope of temporal Markov decision problems. We tried to present RTPI
as an extension of RTDP, Asynchronous DP and existing algorithms, shading a different
light on the question of “how can we perform efficient asynchronous Policy Iteration?”.

No experiments where directly performed on this idea, however, the ATPI algorithm
presented in the next chapter is an instance of an RTPI algorithm. Therefore, this chapter
serves both as a general introduction to RTPI and as first element in constructing the ATPI
algorithm.

We now turn back to the framework of temporal Markov decision problems. Studying and
improving RTPI (through labelling schemes, action elimination, heuristic function discovery,
adaptation to hybrid spaces, generalization schemes, etc.) is beyond the scope of this thesis
but is a very strong topic of interest in future research.

190

13
Simulation-based local incremental policy search for observable

time GSMDPs: the ATPI algorithm

Solving high-dimensional temporal Markov decision problems presents many diffi-
culties. The first difficulty dealt with writing the problem down in the first place.
Chapter 11 provided some hindsight on the inherent structure underlying the com-
plexity of such temporal processes. This highlighted the fact that these processes
where not necessarily Markovian, often had a large number of variables and were
easy to model if one broke them into atomic elements; but the coupling between
concurrent events remained the core reason of the global process’ complexity. Con-
sequently, these complex processes are simple to simulate and to capture into a
generative model but hard to integrate into a single global implicit-event predictive
model.
Based on the GSMDP formulation with observable continuous time and on the
idea of Real-Time Policy Iteration, we design an algorithm based on Approximate
Policy Iteration to construct policies for such problems. This algorithm relies on
simulation-based exploration and evaluation and on statistical learning regression
techniques to construct the value functions. We present initial results on this ATPI
algorithm and illustrate its main weakness, thus motivating the improved version
of the following chapter.

13.1 General idea

Temporal Markov decision problems modeled as GSMDPs represent a class of problems
which is both hard to model and to solve. First, they are hard to model because of the
non-Markov behaviour of the global natural process. Then, even if the process itself retained
Markov property, these problems would be hard to represent as an explicit “p(s′|s)” process
because of the complexity resulting from the concurrent interaction of their local coupled
temporal processes. Lastly, they are hard to model, because they often involve hybrid state
spaces, mixing continuous variables such as time or energy with discrete ones as subway
station number or passenger count and boolean ones as mission definition flags.

This modeling complexity is found again when one tries to solve problems defined as
GSMDPs with continuous observable time. This chapter introduces our contribution to the
problem of solving high-dimensional, hybrid, stochastic temporal problems. We design an
algorithm based on Policy Iteration which uses greedy simulation for exploration of the state

191

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

space. This algorithm also builds on the ideas of statistical learning to extract as much
information as possible from simulations. Finally it exploits the presence of an observable
continuous time in the flavor presented at the end of the previous chapter.

The problems we wish to represent as GSMDPs and for which we want to find good poli-
cies involve a large number of variables. If one artificially includes the GSMDP clocks into
the state space to make the process Markovian, this number of variables increases even more.
On top of these features, integrating the GSMDP process into a single, explicitly defined,
stochastic process is a complicated task while simulating a pair “GSMDP + policy” seems
more tractable. Therefore, we turn to simulation-based evaluation, exploration and learning
in order to locally and incrementally improve policies for the temporal Markov problems at
hand.

The general idea of the Approximate Temporal Policy Iteration (ATPI) algorithm we
introduce in this chapter can be summarized as:

For observable time GSMDPs for which the initial state is known, we perform local
improvements of the policy in the states visited by the greedy simulation of the
best policy found so far. Since our problem uses a total reward criterion, every run
through the state space and until the horizon provides a realization of the “reward-
to-go” random variable in each of the visited states. We use statistical learning
tools to generalize this information in order to build an approximate value function
for the current policy. Then this generalized value function is used to perform local
Bellman backups at the next trial.

In other words, we will:

• perform partial exploration of the state space, guided by greedy policy simulation,

• collect rewards, as samples in the state space of the random variables Rπ(s) (reward-
to-go),

• use these samples to construct a regression of the last run’s policy’s value function,

• use this value function to improve the policy during the next trial.

Additionally, in order to gather enough samples to build a relevant regression for the
value function, we run the exploration trials several times with respect to the same value
function, thus obtaining multiple evaluations of the greedy policy and directly building the
new policy’s value function.

13.2 Approximate Temporal Policy Iteration

13.2.1 Algorithm overview

The initial version of the Online Approximate Temporal Policy Iteration (online-ATPI) algo-
rithm was introduced in [Rachelson et al., 2008b]. Algorithm 13.1 summarizes the essential
steps of online-ATPI which we develop below.

The main loop of online-ATPI performs trials in order to build a training set. These
trials are sample paths, through the state space, guided by the execution of the greedy pol-
icy with respect to Ṽ . In other words, if one starts with a policy πn and its associated

192

13.2. Approximate Temporal Policy Iteration

Algorithm 13.1: Online-ATPI
main:

input: π0 or Ṽ0, s0
repeat

TrainingSet ← ∅
for i = 1 to Nsim do
{(s, v)} ← simulate(Ṽ , s0)
TrainingSet← TrainingSet ∪ {(s, v)}

Ṽ ← TrainApproximator(TrainingSet)
until termination

simulate(Ṽ , s0):
ExecutionPath← ∅
s← s0
while horizon not reached do

a← ComputePolicy(s, Ṽ)
(s′, r)← GSMDPstep(s, a)
ExecutionPath← ExecutionPath ∪ (s′, r)

convert execution path to value function {(s, v)}
return {(s, v)}

ComputePolicy(s, Ṽ):
for a ∈ A do

Q̃(s, a) = 0 for j = 1 to Nsamples do
(s′, r)← GSMDPstep(s, a)
Q̃(s, a)← Q̃(s, a) + r + γt

′−tṼ (s′)
Q̃(s, a)← 1

Nsamples
Q̃(s, a)

return argmax
a∈A

Q̃(s, a)

193

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

approximate evaluation Ṽn, then the action applied in each state s is the action πn+1(s) =

argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)Ṽn(s′)
]
. This way, the values put in the TrainingSet are

samples of Rπn+1 .

Once a set of trials has been completed, the training set is passed to a statistical regression
method in order to build an interpolating function which has the properties of:

• compactness: it stores the information in a memory-saving fashion,

• accessibility: it can easily answer value requests,

• generalization: it presents local smoothness, generalizing the values to their neighbor-
hood in the state space.

The choice of this regression method is important for the performance of the algorithm
and will be discussed with the results.

13.2.2 Greedy simulation for exploration

The function used to build the TrainingSet is the simulate(Ṽ , s0) function. This method
starts from state s0 and simulates the optimal greedy action at each step by calling the
ComputePolicy(s, Ṽ) and GSMDPstep(s, a) procedures. After collecting all the samples (s′, r)
from the execution path, the simulate(Ṽ , s0) procedure performs a cumulative sum, starting
from the horizon and moving backwards in time, in order to build the {(s, v)} set. This set
contains realizations of the random variable Rπn+1(s) which is the reward-to-go variable.
This cumulative sum’s calculation is straightforward in the case of undiscounted criterion.
For a discounted criterion, this sum uses equation 11.1. One has:

V πn+1(s) = E(Rπn+1(s))

So, as the value of Nsim tends to +∞ the average value of state s in the TrainingSet tends
to V πn+1(s).

ATPI performs sampling in the state space along paths defined by the greedy pol-
icy’s simulation. These trajectories provide a set of samples corresponding to the
reward-to-go random variable in each state for the greedy policy.

Similarly to the RTDP case, one major advantage of performing policy-driven simulation
is that the policy guides the exploration of the state space to the states most likely to be
visited. Thus we refine the training set over the relevant states, having the largest probabil-
ity of being reached by the policy. This provides us with a second advantage: this rollout
technique is adapted to sampling in large dimension state spaces without suffering from the
curse of dimensionality.

194

13.2. Approximate Temporal Policy Iteration

13.2.3 Simulation-based policy evaluation

The GSMDPstep(s, a) procedure follows the discrete events systems paradigm applied to
GSMDPs. It activates (or maintains) the a event as a concurrent event to all the current
GSMDP’s exogenous active events and triggers the first transition (not necessarily caused
by a), taking the process to a new state. Therefore, this GSMDPstep(s, a) function really cor-
responds to performing one simulation step of the GSMDP controlled by the current policy.
This consists in:

• activating a (plus deactivating any other previous action, or maintaining a if it was
previously active),

• triggering the event with the smallest clock.

The choice of the optimal greedy action in the simulate(Ṽ , s0) procedure is made by
calling the ComputePolicy(s, Ṽ) function. We push the logic of Monte-Carlo sampling in the
same way that [Bertsekas and Tsitsiklis, 1996] did and consider that since we do not have
a predictive model of our system, even the one-step greedy action needs to be simulated in
order to obtain its Q-value. Consequently, we simulate each of the available actions Nsamples

times in order to obtain its Q-value and use these approximate Q-values to select the best
action as shown in the last part of algorithm 13.1.

Generating the samples for Ṽ and for Q̃-values are two separate processes. Q-values
are obtained through the use of Ṽ and of one-step simulation. Whereas the samples
for the next Ṽ are generated by collecting successive rewards in the global greedy
simulation process.

It is important to separate the set of samples generated for the TrainingSet and the Q-
values computed for action selection. The {(s, v)} values come from the cumulative rewards
really obtained during the last run. Whereas the Q̃(s, a) are obtained by simulating a single
step in the GSMDP and using function Ṽn. These Q̃(s, a) thus correspond to approximate
values for Qπn(s, a) while the {(s, v)} values correspond to sampled values for V πn+1(s).
Having separated these two sampling processes, the important point here is to note that the
value of Ṽn helps choosing the greedy action but never affects the value of samples used for
Ṽn+1.

The data fed to the regression method in order to compute Ṽn+1 is independent
of previous approximation errors for Ṽn since it results from real experience of
interaction between the greedy policy and the simulator.

Since we are using sampling and regression, our approach falls into the category of “less
conservative” approximate Policy Iteration methods presented in chapter 12 and thus, there
is no theoretical guarantee of termination in terms of optimality. However, in practice, we
will see that we can track the expected value of the initial state and stop the algorithm when
we are satisfied with the value obtained. Hence, we do not provide a termination condition
for the algorithm.

195

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

13.2.4 Value function regression

Once simulation has provided the set of samples in the space of valued trajectories, we want
to use it as a training set for a regression method that will generalize it to the entire contin-
uous state space. Several approaches to regression-based reinforcement learning have been
proposed in the machine learning community: methods based on neural networks (start-
ing with [Bertsekas and Tsitsiklis, 1996]), trees [Ernst et al., 2005], evolutionary functions
[Whiteson and Stone, 2006], kernel methods [Ormoneit and Sen, 2002], etc. We chose to
focus — in a first time — on support vector machines (SVM) because of their ability to
handle the large dimension spaces over which our samples are defined.

SVM belong to the family of kernel methods and can be used for both regression (SVR)
and classification (SVC). Training a standard SVR over a given set of samples corresponds
to looking for a hyperplane interpolating the samples in a higher dimensional space called
feature space. Practically, SVMs take advantage of the kernel trick which avoids expressing
the feature space explicitly. Namely, a kernel is the result of a dot product in the feature
space. For a detailed presentation on support vector regression, we refer the reader to [Vap-
nik et al., 1996] or [Smola and Schölkopf, 1998]. We also provide a short overview of SVR
in appendix B.

The important feature of using regressors for the value function estimation, compared
to the simulation-based Policy Iteration methods of [Bertsekas and Tsitsiklis, 1996], [Kearns
et al., 2002] or [Tesauro and Galerpin, 1997] lies in two facts. Firstly, we deal with continuous
state spaces, thus, for continuous probability distributions, there is a null probability to visit
the same state twice when simulating our policy. Consequently, we are only interested in
the information carried by our samples if we are able to generalize this information, at least
locally. But state space continuity is a constraint of a specific version of the exploration
problem. Similar problems occur with high-dimensional discrete state spaces. In fact, we
suppose there is an underlying structure in the value function which needs to be inferred
from our sampling. More specifically, finding this structure corresponds to finding which
states have similar values than the samples and how the value function can be represented
compactly. This notion of generalization is independent of the state space continuity, this
last argument only reinforces the need for regressors. Consequently:

We use Support Vector Regression in order to interpolate the value function between
our valued trajectory samples. By doing so, our goal is to build a statistically
sound value function, defined over the large dimension state spaces of GSMDPs
and expressing in a compact form the local properties of the value function.

13.2.5 Online policy instantiation: Policy Iteration without policy storage

For the large state spaces of our continuous-time GSMDPs, even with a reasonably good
policy evaluation, it might be very long or impracticable to compute the one-step improve-
ment of the policy. Indeed, most of the time, computing a complete policy is irrelevant since
most of this policy will never be used for the simulation-based evaluation step. Instead, it
might be easier to compute online the best greedy action in the current state, with respect
to the value function. This feature characterizes ATPI as an RTPI algorithm.

In a standard Policy Iteration method, the optimization step consists in solving equation
13.1 in every state of the process. In the case of Asynchronous Policy Iteration, it corre-

196

13.2. Approximate Temporal Policy Iteration

sponds to solving this equation in every state of the Sn subset, which, for ATPI, is defined
incrementally by greedy simulation.

πn+1(s)← arg max
a∈A

Q̃n+1(s, a) (13.1)

with: Q̃n+1(s, a) = r(s, a) +
∑
s′∈S

P (s′|s, a)Ṽn(s, a)

Since the states of Sn are generated “on the fly” by the simulation process, they are not
known in advance and one cannot optimize the policy over these states as a “batch” improve-
ment. Instead, at the end of the evaluation phase, the value function Ṽn is stored and no
policy is computed from it. A new improvement phase is immediately entered and whenever
the policy πn+1 is asked for the action to perform in the current state s, it performs online
the estimation of all Q-values for state s and then chooses the best action to undertake. We
call this online instantiation of the policy “online approximate policy iteration”, thus the
“online” prefix in the algorithm name.

An important property of online policy instantiation is that, in the end, the policy
is never explicitly stored. It is defined on the fly in each visited state and evaluated
after a set of trials when enough samples have been collected to infer the Ṽn+1 value
function.

For continuous state spaces, computing exactly πn+1 implies being able to compute in-
tegrals over P and Ṽn. Since we wish not make hypothesis on our model, we reuse the
simulation engine with the GSMDPstep(s, a) function in order to sample the value of Q(s, a)
from the process by performing one-step simulations as presented in section 13.2.3.

13.2.6 What about Markov’s property?

We have seen in chapter 11 that the stochastic process of the natural state of a GSMDP
controlled by a given policy did not retain Markov’s property. In the previous paragraphs
however, the policy and value functions we defined only use state variables belonging to this
natural state (since the events’ clocks are often not observable during execution). This can
seem paradoxical since we only know that there exists a deterministic Markovian optimal
policy for Markovian process.

As discussed in section 11.5.2, we can take several options concerning the optimality of
a policy defined only on the natural state of the process.

In this first version, we chose to make the assumption that the optimal policy does
not depend on the clock values, or at least that the clocks’ influence on the optimal
policy are negligible.

This assumption is justified by the fact that we expect event clocks to have approximately
comparable values and that simulating several times the global process’ behavior between
time zero and the horizon performs some averaging on the local behavior induced by the
clocks.

Therefore, we abandon even more the idea of finding an optimal policy by only consider-
ing the natural state variables, but hope this same optimal policy does not depend too much

197

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

on the clocks’ values.

There is however, an important distinction to be made between:

• The observable variables upon which we build the policy and the value function. These
variables are the variables one can really measure during execution and input to a
controller to decide which action to undertake.

• The Markovian variables which are purely internal to the simulator. Among these
variables, one can find the process’ clocks. Without these variables, one could not
simulate the process since they are necessary to predict the next simulation step. Note
that this set of variables is not necessarily unique and equivalent simulators can be
designed with more or less efficient sets of Markovian variables.

The Markovian variables are never accessible to the policy or the value function. How-
ever, they are stored inside the simulation engine and the complete state of the simulator
is always defined by these hidden Markovian variables. This has two important consequences.

The first consequence is that knowing the observable state sobs is never sufficient to
predict the next observable state of the process. Indeed, to predict this next state, one
would need the complete internal state of the simulator. This brings the conclusion that
our simulator needs to have one important property: one must be able to make a duplicate
of it, in order to run simulations initialized from the current state, without affecting the
central process itself. This duplicate should conserve the current state of the “real” process.
This is necessary for the two calls made to GSMDPstep(s,a) in algorithm 13.1. During the
first call (in simulate(Ṽ , s0)), the step is taken inside the “real” process in order to let it
advance towards the horizon. In the second call (in ComputePolicy(s, Ṽ)), a duplicate of
the process is made first because the simulation ran from the current state does not concern
the evolution of the “real” process: it serves to calculate the Q-value of the current action
considered. In other words, in order to call the GSMDPstep(s,a) procedure, one actually:

• makes a copy of the current process in observable state s,

• activates event a,

• asks the simulator to go one step forward.

This is consistent with the online-ATPI algorithm presented in algorithm 13.1 since this
GSMDPstep(s,a) procedure is only called online, ie. in the current state of the simulator.
Thus, one does not need to explicitly observe the full state of the process, the only require-
ment is that the simulator be “copy-able”.

Because online-ATPI performs online estimation and improvement based on simu-
lation, it is not necessary to observe the Markovian state to simulate the process.
However, a weaker condition must still be satisfied: one must be able to “clone”
the simulator in its current state in order to run simulations without affecting the
global process’ state.

The second consequence we develop here derives naturally from the observations made
above. We know there is an underlying Markov process which is only partially observable
and drives the global behaviour of the observable variables, hence, it makes sense to look for

198

13.2. Approximate Temporal Policy Iteration

the hidden Markov model of these hidden variables and to derive a policy on these variables
instead of the observable variables. The field of studying Hidden Markov Models [Rabiner,
1989; Cappé et al., 2005] provides mathematical foundations and tools for such problems.
However, our focus goes to assembling the simulation-based method of ATPI with all its
components and we will keep the previous assumption of low impact of the clocks on the
policy in the current case. This remains an open area of research and interest which goes
beyond the scope of this thesis and should be addressed in future work.

13.2.7 Continuous or hybrid state variables?

Finally, it is interesting to remark that we apparently only deal with continuous variables in
the ATPI algorithm, while we stated that the problem at hand presented a hybrid state space.

Indeed, we assimilate every variable to a continuous (or a set of continuous) variable(s),
using the following conversion rule from discrete to continuous:

• If the variable’s discrete values are ordered, then we make a direct mapping to the
corresponding continuous variable. Typical examples are the remaining fuel level or
the number of passengers in a station. For the latter, we “artificially” introduce the
possibility of 3.74 passengers by considering the variable as continuous but we should
keep in mind that the interpolating value function will only be asked for the value at
integer points of this variable since these points come from simulation.

• Else, a variable with d unordered values is mapped to the higher dimensional space of
2p with p ≤ d, in order to preserve a notion of equivalent distance between values. For
example, mission advancement flags will be represented by as many boolean variables
as needed, all mapped to the [0, 1] interval.

The idea behind such a transformation from hybrid towards continuous is to preserve the
notion of distance. One can define a distance of 3 between “42 passengers” and “45 pas-
sengers”, similarly to a distance of 7.2 between time 16.5 and time 23.7. However, one
cannot define an ordering or a distance between “recharge mode 1”, “recharge mode 2” and
“recharge mode 3”. For such boolean variables, the only distance we define is a distance of 1
between “recharge mode 1” and “not recharge mode 1”, thus projecting this initial variable
having 3 unordered values into the [0, 1]3 space.

All the samples collected during simulation are samples defined for the exact values of
the discrete variables (no values appear in-between since these values are sample states from
the simulator). Similarly, the inferred value function is always asked for values in real states
since these states are sampled from the simulator as well. Consequently, we train the regres-
sor with only the discrete values for previously discrete variables and we query the regressed
function only in these discrete values again.

This way, our option of only considering continuous variables corresponds to the idea
of introducing “virtual” values between discrete ones, which are used uniquely for
the purpose of building the regression. These virtual continuous variables maintain
a notion of distance between states which respects the initial distances between
hybrid states.

In other words, we transform the initial hybrid state space into a continuous metric space.
This increases even more the dimension of the process’ state space. We rely on simulation-
based exploration to counter the curse of dimensionality and on SVR to handle the large

199

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

vectors of sampled state variables.

Conclusion

Finally, ATPI is an approximate Policy Iteration method, alternating phases of par-
tial, approximate evaluation of the current policy — through the use of simulation-
based sampling and support vector regression — and phases of local policy im-
provement in a subset of states chosen by greedy simulation.
Because of the observable time variable’s presence which avoids loops, the policy
needs not be stored after each action improvement in order to build the V πn+1 value
function.
When applying ATPI to GSMDPs, we chose to focus on the natural state variables
even though the associated process does not retain Markov’s property.

13.3 First results with ATPI on the subway problem

We implemented and ran ATPI on an instance of the subway problem. This section illus-
trates the first results obtained. In a first part, we introduce the problem’s modeling, then
we present various optimization results and finish by explaining why ATPI is an incomplete
optimization method, justifying the improvement of chapter 14.

13.3.1 The subway problem

Consider the problem of organizing a subway network from the daily point of view of the
network manager. This manager only has a few actions available: he can only decide to add
trains on the subway lines if there are still available trains in the garage or he can decide
to remove trains from the lines when they reach the station just before the terminus. His
goal is to balance the cost of running the network by the benefit from ticket sales. In order
to make his decision, he has a simulator of the network. This simulator is a discrete-event
system described as a GSMDP. The natural state of this GSMDP concerns the number of
passengers present in each station and in each train, the current position of each train in
the network and the time of day. This GSMDP is driven by events of different nature which
can be divided into three categories: passengers arrival in the stations, train movements,
manager’s actions.

In the simple version of the problem we will consider here, the network has a single sub-
way line, six stations and four trains. This already yields a rather complex problem with
strongly coupled events. Adding more lines and trains is mainly a matter of adding more
variables and events. The subway problem’s state space is summarized in table 13.1.

Since there are 6 stations and 4 trains, these variables yield a state space of dimension 21.

The process defined over this state space is driven by the set of events described in table
13.2. Most of the events listed in table 13.2 have deterministic effects on all the variables
but t. The most complex event to describe is mtj . This event summarizes three sequential
phases in a single event. First the train moves to station pj + 1, then a certain number of
passengers leave the train and lastly, passengers from the station board the train. These
three phases occur without any possible interruption so we decided to model them into a

200

13.3. First results with ATPI on the subway problem

variable name value domain variable description

nsi {0, . . . , 50}
Number of passengers waiting for a train in sta-
tion i (i ∈ {0, . . . , 5}). The maximum capacity
of a station is 50.

ntj {0, . . . , 50}
Number of passengers onboard train j (j ∈
{1, . . . , 4}). The maximum capacity of a train
is 50.

pj {0, . . . , 5} Current position (station number) of train j.

fi {0, 1}
These boolean variables indicate whether sta-
tion i is “free” or not. Even though these vari-
ables are redundant with the pj variables, they
facilitate the process coordination.

t [0, 1440] Time of day, in minutes

Table 13.1: Subway problem — state space

single event but it would still be possible to break them in three different consecutive events
of the GSMDP. The movement phase is deterministic with respect to the post-action value
of pj . The number of passengers going down is simulated from a normal law based on the
percentage ρ(i, t) of passengers wishing to go to station i at time t. Drawing a percentage
value from this model provides the fraction of passengers leaving the train. Once the trav-
ellers have left the train, the ones waiting in the station can board, as long as the train is
not full. If the train becomes full, the remaining passengers stay in the station and wait for
the next train.

Event durations are provided with the f function of each event and — depending on
the event — can be deterministic of stochastic. To keep this description short and simple
we will only state that the specification of the GSMDP follows common-sense rules: move-
ment actions are only possible if the next station is free, a train sent to the garage lets its
passengers leave before entering the garage, etc. The events listed in table 13.2 constitute
a set of 19 coupled events (27 if one splits the movement events into their three components).

For the reward model, we introduce three parameters allowing to define how “econom-
ically hard” the problem is. These parameters are summarized in table 13.3, they are the
train cost rate, the lump sum cost of starting a train and the ticket price.

The initial values presented in table 13.3 correspond to a rather hard economical problem
in the sense that if, for example, one sets the four trains to run all day long, then the
overall cost is 4 × 1440 × 2 = 11520 which implies that the subway needs to transport
11520/1.5 = 7680 passengers to be profitable with this strategy.

13.3.2 Optimization results

The version of ATPI we implemented makes use of the LIBSVM C++ library of [Chang
and Lin, 2001]. We used the standard ε-insensitive SVR where the only parameter to tune
is the SVR covariance matrix. LIBSVM uses as the defaut an isotropic covariance matrix
of σ2I for which we chose σ2 = 20 after having scaled all our values between zero and one.

201

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

event name controllable? event description

api no
Arrival of passenger in station i. This increases
nsi by one, except if the station is already sat-
urated.

mtj no

Moves train j. Increases pj by one (modulo 6),
sets fpj to zero and fpj+1 to one. Also changes
the number of passengers inside the train and in
station pj + 1 by letting the passengers in and
out of the train.

adj yes

Puts train j online from the garage. Train j
starts running at station 1. This action is only
available is train j indeed is in the garage and
station 1 is free.

rej yes
Sends train j to the garage. This action is only
available if train j is in station 0.

a∞ yes
The no-op action, lets the first exogenous event
to trigger take the process to a new state.

Table 13.2: Subway problem — event list

variable name value used variable description

c −2 Cost of running a single train, per time unit.

d −2
Lump sum cost of moving a train out of the
garage.

tc 1.5
Ticket cost, this is the reward obtained by the
manager every time a passenger leaves the sub-
way network.

Table 13.3: Subway problem — reward parameters

202

13.3. First results with ATPI on the subway problem

Simulation of trials and outputs of rewards were performed by interfacing ATPI with the
VLE simulation engine of [Quesnel et al., 2007] for which we had developed the GSMP and
GSMDP simulation extensions. The experiments were ran on a 1.7GHz single core processor
with 884 MB of RAM.

The parameters used for ATPI were chosen so as to perform Nsamples = 15 one step
lookahead state samples per action and Nsim = 20 trials before recomputing the SVR value
function.

Figures 13.1 to 13.3 present the results of running ATPI when the value function is initial-
ized with the SVR obtained by running a first exploratory set of trials without optimization,
thus providing an estimate of the initial policy.

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 0 2 4 6 8 10 12 14

in
iti

al
 s

ta
te

 v
al

ue

iteration number

stat
SVR

Figure 13.1: Subway optimization — Policy quality

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14

SV
R

 tr
ai

ni
ng

 ti
m

e
(s

ec
)

iteration number

Figure 13.2: Subway optimization — SVR training time

203

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14

SV
 n

um
be

r

iteration number

Figure 13.3: Subway optimization — Number of support vectors

13.3.3 Discussion

What happened during optimization?

Figure 13.3 presents the number of support vectors needed to build the regression of the
value function. As the policy becomes more complex, its value function also changes and has
more variations. Thus, the number of support vector increases and evaluating the SVR takes
more time. Even though this rule of thumb is a quick description of what really happens
during support vector regression, it seems to hold for some of the value functions used.

Having more complex SVR as value functions results in longer trial times: the more
support vectors, the longer the SVR evaluation in a given state, and thus the longer the
simulation time.

As the number of iteration grows, the value function presents more variations, which
implies that building the regression becomes more and more complex. This complexity is
balanced by the local regularity of the samples’ values. This is illustrated by the beginning
of the curve in figure 13.2. The sudden drop in calculation time as well as the number of
support vectors in the regression presented on the two corresponding figures will be explained
a little further.

Figure 13.1 is maybe the most important figure in the results. It presents the value of
the initial state (time zero, stations empty, trains in the garage) given the policy, as the
number of iterations grow. The solid curve is the simple average of the values obtained by
simulation, the dotted curve is the result given by the SVR regression when asked for the
value of the initial state.

First, it is interesting to note that — as expected from the previous rough analysis —
the initial policy of letting all four trains run all day long results in a somewhat economical
disaster: the subway manager looses approximately 3000 currency units per day.

However, the first iterations show an interesting increase in policy value. We need to

204

13.3. First results with ATPI on the subway problem

remember that the values plotted on figure 13.1 are the average of the cumulative sum of
rewards really obtained during simulation. Therefore, this means that, for example, the
strategy used by ATPI during iteration 4 provided an expected average reward of −880. In
other words, simulating policy π4, Nsim times, resulted in an average value of −880.

Consequently, on the previous example, when looking at the first iterations, one could
consider that the monotonous evolution of the policy’s value function during Policy Iteration
is preserved and thus that ATPI does not suffer too much from the approximation due to
the SVR in its approximate Policy Iteration scheme.

The small decrease in policy value at iteration 5 and the huge one at iteration 9 constitute
a problem though: we will analyze this feature a little further.

A good policy after iteration eight

At iteration 7, the subway management strategy reaches an economical balance and at iter-
ation 8, it seems that the subway becomes profitable, even with the price constraints given
in table 13.3. It is encouraging concerning the ability of ATPI to find a good policy in a
relatively short number of iterations.

However, this also depends a lot on the initial policy and on the states explored by this
initial policy. The first simulations guided the exploration towards parts of the state space
which allowed policy search to find better execution paths. With another policy initializa-
tion, improvements can be much slower and ATPI might not find a good policy at all.

This pathology is actually a special case of what causes the sudden drop in value at iter-
ation 9. We seemed to have found a good π8 and suddenly, π9 seems to perform terribly and
provides an average reward in the initial state of −1900. The bias and approximation error
of SVR cannot be held responsible for such a policy decrease: approximate Policy Iteration
does not converge but usually oscillates around policies which are not too far from optimality.

In the next paragraphs, we first discuss the choice of SVR for value function regression
and then focus specifically on the value function decrease of iteration 9.

Why using SVR maybe was not the best idea

Our initial reason for choosing SVR as our value function approximator was based on two
pragmatic statements:

• we need a regressor which can handle large dimension continuous sample spaces,

• support vector theory provides a well-understood framework and efficient implementa-
tions of classifiers and regressors.

The initial results of ATPI seem to comfort us in this conclusion. However, there are
arguments which go against the use of ε-insensitive SVR and SVR in general.

First of all, ε-insensitive SVR constitute a biased estimator. We want to obtain a regres-
sion computing the average of the Rπ(s) variables, given the noisy input of pairs of state
samples and values. ε-insensitive SVR tries to fit all samples inside the insensitivity tube,
thus biasing the estimator: the value output is closer to a median than to an average. This

205

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

feature gives SVR its robustness but introduces a bias in the regressor’s output.

Parsimony, ie. the low number of support vectors in the final regression, actually comes
from the value of ε and the loss function. One can see on figure 13.3 that this number of
support vectors sometimes becomes really important and that this parsimony is lost. Also,
reducing the value of ε implies augmenting the number of outliers and thus the number of
support vectors. Hence, the SVR formulation seems not to be appropriate for our problem.

Several options are possible from here. If we wish to keep the ability of kernel methods
to handle large dimensions, we need to reformulate the regression problem. The kernel
ridge regression or the kernelized LASSO (Least Absolute Shrinkage and Selection Operator)
formulation of [Tibshirani, 1996; Roth, 2004; Wang et al., 2007] makes use of the kernel trick
but writes the regression problem as1:

min
w,b
‖w‖1 + C

∑
i

(
yi − wTφ(xi)− b

)2
While the SVR formulation was:

min
w,b
‖w‖2 + C

∑
i

l
(
yi − wTφ(xi)− b

)
In other words, the LASSO formulation uses a L1 regularization term with an L2 pe-

nalization term while the ε-insensitive SVR used an L2 regularization penalization with an
ε-insensitive L1 loss function l. We refer the reader to the above references for details on
the generalized LASSO method and the associated search for efficient kernels. The L2 loss
function avoids the previous bias which was cause by the l function. Additionally, general-
ized LASSO regression provide very sparse regressors. We simply conclude that the LASSO
formulation is a much better expression of our need for a regressor, as long as samples are
provided as a batch set of data.

Another option is to consider that each sample only affects the regressor locally. Thus,
one could give up the idea of global parsimony to focus on the approaches of Local Learning
(as in [Atkeson et al., 1997]). The recent Locally Weighted Projection Regression algorithm
of [Vijayakumar et al., 2005] represents the state-of-the-art of local learning for regression
and brings together the results of locally weighted learning, Gaussian models and Partial
Least Squares regression.

Lastly, we can consider the option of storing all the samples obtained without post-
processing and relying on the ideas of Parzen windowing in order to build value functions:
the value in a given state being the weighted average of all neighbors. The weights corre-
spond to some kernel function.

Even though this last idea looks like brute-force processing and might be problematic for
very large databases, we will see that it nevertheless constitutes an interesting and efficient
basis for regression.

These two last approaches will be developed along with the improved ATPI algorithm in
the next chapter.

1with the notation conventions of appendix B

206

13.3. First results with ATPI on the subway problem

We chose SVR in the first place because of their ability to handle large dimension
state spaces. However, the bias in the SVR regressor makes it unappropriate for
value function regression. Moreover, if one wishes to remain in the kernel methods
family of regressors, the k-LASSO method seems more parsimonious and accurate.
Finally, and because of the local incremental impact of our samples in the value
function, we will explore the options of Locally Weighted Learning in the next
chapter and will also evaluate an efficient of raw storage of samples.

This formulation of ATPI is incomplete

Finally, we need to provide an explanation for the small decrease in value function at iter-
ation 5 and, more importantly, for the drastic loss at iteration 9. This unwanted behavior
of ATPI comes from the problem of exploration for policy evaluation: in regions which have
not been explored by the last iteration’s trials, using the regressor is a very risky operation.

Indeed, in these regions, no samples have been given to the regressor and thus the esti-
mation can be completely erroneous. We can graphically illustrate this behavior on figure
13.4.

t

ss0

b

b

b
b

b
b

b

b
b

b

b

b

b
b

b
b

b
b

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc
bc

bc

bc

bc
bc
bc

bc

bc
bc

ut

ut

ut

ut

ut
ut

ut

ut
ut

ut

ut

ut

ut
ut

ut

ut

ut

ut
ut
ut

P (s′, t′|s0, t0, a1)

Q(s0, a1) =?

Figure 13.4: The exploration for evaluation pathology

In figure 13.4, we consider a 2-dimensional augmented state space with one variable in s
plus the observable time variable. This way, the state space can be enclosed in the rectangle
area. Trajectories resulting from the trials are sets of samples going from the “bottom” line
at t = 0 to the “top” line at t = T . Three trajectories have been plotted in order to represent
the trials at iteration n. One first important thing to notice is that these trials cross only a
very small part of the state space and thus only evaluate the policy in these states. Thus,
the implicit policy πn, which is only instantiated online in visited states as explained earlier,
is also only evaluated in the same visited states.

When one enters iteration n+1 and tries to compute the greedy policy in state (s0, t0), he
has to do with respect to the V πn value function. This value function is the one computed
from the previous iteration’s regression. Suppose now we try some action a1, in (s0, t0),
which is different of πn(s0, t0). This action might take us to a state rather far from the

207

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

states explored in the last trial. This raises the question: is computing Q(a1, s0, t0) using
the regression from the last iteration still relevant?

Indeed it is not. As long as the policy explores a lot of states or as long as the rewards
obtained through exploration yield low cumulative rewards, the greedy policy is “tempted”
to explore because the bad cumulative rewards can be directly compensated by immediate
positive rewards. Thus, as long as the SVR underestimates the value of the last run’s policy
in the unexplored regions, the exploration might be drawn to them and eventually yield
interesting trajectories.

However, when good trajectories have been found, the average cumulative reward is high.
The next step’s exploration then uses a value function that might overestimate the policy’s
value in non-explored areas. For states far from the last iteration’s trials, the regressor ap-
proximately outputs the average of rewards. In this case, it can draw the exploration phase
out of the good regions found at the previous iteration and towards overestimated regions.
When these overestimated regions reveal themselves as not providing any large reward, one
obtains the behavior witnessed between iteration 8 and 9 in figure 13.4. The V π8 value func-
tion overestimates the expected gain in unexplored regions, attracts the exploration for π9

out of the trajectories visited for π8, the new trajectories yield lower rewards than expected
and the value function drops drastically. More generally, the exploration is drawn out of the
reward-providing regions towards worse regions and the cumulative reward of trials decreases
from one iteration to the other.

Actually, this problem works both ways: it is particularly visible when the value of the
initial state decreases, but the problem is the same for underestimating the value function in
unexplored regions. When a regressor underestimates the true value of a policy, it can lead
the exploration to miss some good regions early in the iterations while a good policy might
have been found if the regressor did not underestimate the expected gain.

As stated in the last paragraphs, this problem seems to be a dead-end: we are looking for
a representative value function but we are not ready to perform sampling everywhere. We
propose to solve this dilemma by introducing a notion of confidence in the value function.
This is the basis idea of the improved ATPI algorithm presented in the next chapter.

To conclude on the incompleteness of this first ATPI version:

This first version of ATPI — which we call naive ATPI because it naively believes
that samples can yield information about far unexplored areas — suffers from the
problem of evaluating the confidence we have in the regressed value function.

13.4 Conclusion

In this chapter, we presented the ATPI algorithm. This algorithm relies on the following
distinct features:

1. It performs forward, simulation-based search, by using greedy policy simulation to
guide its exploration of the state space. Such an exploration behavior, related to
policy iteration, can be seen as an “improve the policy only in the situations we are
likely to encounter” optimization strategy. Hence, ATPI is an RTPI algorithm.

208

13.4. Conclusion

2. ATPI considers the state space to be a metric space and generalizes discrete and boolean
variables to continuous ones. Consequently, it defines its policies and value functions
over this extended continuous state space. Used in conjunction with simulation-based
exploration and policy iteration, this features leads to evaluating the value function
and policy only in “natural” values of the variables even though they are considered
continuous. Similarly, it results in sampling trajectories only in these “natural” values.

3. Moreover, since time is included in the set of state variables, the specific oriented
structure of temporal problems allows the forward search optimization scheme to store
only execution paths without remembering the optimized policies. Namely, knowing
explicitly policy πn is not necessary to perform iteration n+ 1.

4. In order to overcome the problem of the infinite continuous state space, we consider a
generalization scheme based on support vector regression in order to infer the global
value function from the trajectories obtained during the trials.

In the end, ATPI can be related to an LAO* algorithm (see [Hansen and Zilberstein,
2001]) applied to temporal, continuous state space problems. However, as shown in the
previous chapter, ATPI is more closely related to RTPI since it is a policy-centered method
which does not need a heuristic value function in the first place.

The first results on ATPI showed both encouraging results and important weaknesses in
the algorithm. ATPI, when initialized with a policy that leads to exploration, found a good
policy for the subway problem after only 8 iterations.

However, we face a drawback of partial exploration coupled with generalization. This
drawback deals with the definition of a notion of confidence — similar to the notion of sta-
tistical relevance — and the naive version of ATPI cannot overcome the problem of over or
underestimating the value function and knowing when to trust it or not.

The following chapter defines a more general framework by trying to extract the core
components of a discrete events, controllable, temporal system and introduces the improved
ATPI algorithm in order to build policies for such systems.

209

Chapter 13. Simulation-based local incremental policy search for observable time
GSMDPs: the ATPI algorithm

210

14
The improved ATPI algorithm

This chapter presents the result of our work on controlling explicit-event temporal
problems. It draws from the results of all the previous chapters in part III and in-
troduces an abstract description of the systems we want to control. This description
is based on the discrete events systems paradigm and captures the class of problems
which we call Discrete Events Controllable Temporal Systems (DECTS). Based on
this abstract formulation and on ATPI’s previous conclusions, we introduce the
improved ATPI algorithm, which corrects the confidence problem of ATPI. This
algorithm synthesizes all the previous contributions into a single framework. We
present several examples of improved ATPI implementations and discuss the first
results obtained on the subway problem.

14.1 Defining discrete events, controllable, temporal systems

14.1.1 Core properties of DECTS

The subway or airport problems cannot be modeled directly as Markov Decision Problems.
This is due to the presence of internal, non-observable dynamics. The natural process re-
sulting from these hidden dynamics is not an MDP anymore and needs specific modeling
attention, for example as a GSMDP. Nevertheless, the previous chapter intended to design
the ATPI algorithm to control such non-Markovian decision problems, by underlining which
hypothesis needed to be made along the reasoning.

In this first section, we try to capture the essential properties of the systems we wish to
control using ATPI-like algorithms. We call such problems Discrete Events, Controllable,
Temporal Systems or DECTS in short.

Our introduction of a DECTS follows the idea of DEVS discrete events models in the
sense that a discrete event system is given as a black box, with internal and external dynam-
ics (the equivalent of the DEVS δint and δext), temporal behavior (ta), outputs (λ), etc. In
the Reinforcement Learning vocabulary, such a system would be associated with a genera-
tive model, ie. a black box which outputs a state value and a reward, given an action as input.

It is however important to make a distinction between what we could call Markovian
generative models and non-Markovian ones. Markovian generative models take a pair (s, a)
as input and return a pair (s′, r) as output, they are simulators which do not depend at all

211

Chapter 14. The improved ATPI algorithm

on hidden internal variables. If there are any internal variables in such a model, they are
fully observable and thus participate in the s input mentioned above.

Markovian model’s transition function: T (s, a) = (s′, r)

On the contrary, a non-Markovian generative model takes an action a as input and
outputs a pair (s′, r) which does not only depend on a. Such models can have a hidden,
non-Markovian internal state which influences the output. Simulators in general belong
to this class of generative models. The engineer designing the model designs the internal
dynamics but these dynamics and internal variables are not necessarily observable to the
decision maker and the resulting behavior does not retain Markov’s property because the
observable variables do not uniquely define an internal state.

non-Markovian model’s transition function: T (a) ≡ Tinternal(a, sinternal) = (s′, r)

Hence, with this kind of models, applying action a in observable state s does not always
result in the same distribution over (s′, r). The natural state process of GSMDPs is an ex-
ample of a non-Markovian generative model. Controlling such models implies either making
hypothesis about the importance of hidden variables or having some knowledge about the
link between observations and internal state. In the latter case, these problems can be ad-
dressed — at the price of a higher complexity — as Partially Observable MDPs (POMDPS,
[Kaelbling et al., 1998]).

So the first feature of a DECTS is to be a discrete events system, with a controllable
aspect of inputting decisions and observing results and rewards, provided as a generative
model which does not necessarily retain Markov’s property.

Hence, a DECTS defines a transition function or step function providing the output ob-
servation and reward as a function of the input decision and the internal state. From the
GSMDP point of view, this step function triggers the next GSMDP event and moves on to
the next state. From a purely DEVS point of view, this step function is the δext function
when the input is received on an input port corresponding to actions.DECTSations

a

observations
(s′, r)

step(a) ≡
δext(a, sinternal)

Figure 14.1: Schematic representation of a DECTS as a DEVS model

The internal dynamics remain a discrete event system, specified in any discrete event
formalism. The internally triggered transitions of the DECTS depend on the internal state,
itself being affected by the history of action inputs. This feature makes DECTS a controllable

212

14.1. Defining discrete events, controllable, temporal systems

discrete events system.

This notion of Controllability is both to relate and to distinguish from the general notion
of Controllability in Control Systems Theory. A DECTS is said to be controllable in the
sense that an external decider can act upon the evolution of the DECTS’s process through
discrete actions and thus try to control the future state of the system. However, general
controllability for a control system starting in s0 and aiming at sf refers to the existence of
a sequence of inputs which leads from s0 to sf . Such a notion is not guaranteed in the case
of DECTS 1.

Finally, a DECTS is a temporal system in two separate senses:

• Each internal, discrete event transition has a temporal extension, characterizing the
way the discrete event system evolves in time. Similarly to DEVS models, time is
the common synchronizing feature between independent models. Hence, DECTS are
event-driven temporal models.

• The internal transition function of a DECTS can depend on an explicit time. This
simple feature, which particularizes time among other variables, focuses the class of
physical problems we can address with DECTS to sequential decision tasks with tem-
poral extensions. It is important to note that these tasks can present non-stationarity
features or not, as well as observable time or not (in which case we could talk about
time-dependent DECTS).

A DECTS is a discrete events model, evolving through discrete steps. It is also
a controllable model, defining possible action inputs which condition the internal
dynamics. It needs not be a Markovian model and can have a hidden internal state.
Finally, it is a temporal system, where transitions have temporal extensions and
where the internal dynamics can depend on an explicit time variable.

We define a particular class of DECTS which we call reproducible DECTS. A standard
DECTS, from an object representation point of view, needs only define its initialization and
step functions. From the DEVS point of view, such a model simply defines the δext, δint, δcon,
ta, λ, etc. functions with a specific emphasis on the observable time variable if it is present
and on the action input ports. However, for reproducible DECTS, we introduce an additional
hypothesis. We suppose the DECTS defines a clone function. This clone function creates
a copy of the system, including its internal state, still without letting the decision-maker
access this internal state.

Reproducible DECTS are a specific compromise between Markovian and non-Markovian
generative models. They never allow the deciding agent to access the internal state of the
process, but define a weak notion of reproducibility, allowing the user to clone the current
process in order to make copies of it as a black box.

By putting a name on such models and making this explicit distinction, we broaden the
class of systems we will deal with and propose an alternative to the MDP / POMDP /
non-Markov processes usual categories. Reproducible DECTS are particularly interesting in
the case of simulation based-approaches since they allow to reproduce experiments with a

1However, one could remark that such a notion becomes a lot weaker in the case of stochastic systems and
is related to the existence of proper policies.

213

Chapter 14. The improved ATPI algorithm

guarantee on the initial state, even though this state might not be observable.

In particular, the GSMDP description we gave in the previous chapter is a particular
case of reproducible DECTS.

Reproducible DECTS are a specific class of DECTS with non-observable internal
state which define a weaker notion than observability. Namely, these models make
the hypothesis that the user has the possibility to clone a model in its current
internal state (without necessarily observing this state).

From now on, our goal will be to construct efficient controllers for reproducible DECTS
decision models.

14.1.2 Controlling DECTS and modeling a learner

Now that we have extracted the essential properties of the systems we want to control, de-
fined the class of DECTS which extends controllable Markovian problems and distinguished
the specific case of reproducible DECTS models, we wish to define the core properties of a
learning algorithm for DECTS. Our idea is to extend the context of actor / critic architec-
tures to the case of simulation-based approaches.

In classical actor / critic approaches, the operator (the actor) interacts with a main ex-
periment, which can be repeated if needed. The actor controls the experiment while the
critic evaluates the actor’s behavior. Depending on the problem’s hypothesis, the actor has
the ability to reset the process to a given state or not. The results of interacting with this
experiment provide the reinforcement signal for the learner. However, in simulation-based
approaches, the agent can generate side experiments dedicated to obtaining information
about the system (Q-values for instance), these experiments consist in temporary simula-
tions which do not affect the global experiment. The idea of simulation-based approaches is
that both the global experiment and the side ones have the same nature but are independent:
they all are simulations which do not interact. Consequently, it must be possible to represent
them in the same modeling framework.

Hence the goal of this section is to represent the interaction of the learner’s black box
with the simulation DECTS model inside a common modeling framework.

We define a DECTS learner as a black box with inputs regarding experience from interac-
tion with the DECTS and outputs which contain optimization instructions. More specifically,
the learner receives experimental results from any started experiment: either the main sim-
ulation of a trial or an evaluation simulation. As for outputs, the learner generates control
commands directed to a given simulation or instructions to start a new experiment.

From a DEVS point of view, this corresponds to creating recursive simulations through
the use of dynamic models. Dynamic models are coupled models where an executive model
creates and links other DEVS models on the fly: this model can create, delete and link new
models in the DEVS coupled graph. The DS-DEVS extension of [Barros, 1997] defines such
dynamic structure systems. However, the dynamically created DS-DEVS models share a
common simulation time, while our experiments are “virtual” with respect to the trial time

214

14.1. Defining discrete events, controllable, temporal systems

and to the optimization time. Hence, we need to be able to define recursive simulations.
Recursive simulations, as presented in [Gilmer Jr. and Sullivan, 2005], consist in starting
these virtual simulations as virtual experiments embedded in a main course of action (see the
above reference for a precise definition of the term “course of action”). Even though recursive
simulations have received little attention in the DEVS community so far, they can be easily
modeled as dynamically created models where the internal state is the “child” simulation
itself. These models have a ta function always returning zero (they do not change the global
simulation time) and output the simulation results before being suppressed from the graph
of models.

Figure 14.2 illustrates the representation of a DECTS learner as a DEVS model using
dynamic recursive simulations creation.DECTSlearner

exeutivemodel DECTS
reursivesimulationmodeldynamially reate or loneDECTS models on the �y andlink them with the learner

reeive information fromlinked models

Figure 14.2: Modeling a DECTS learner inside the discrete events framework

Inside the learner’s model, different decision objects constitute the internal learner’s state.
These objects can be a value function, a policy, a set of decision rules or any internal variable
needed by the system. These decision objects form the internal state of the executive model
for the learner. Combined with the learner’s dynamics (expressed as the separate steps of the
learning algorithm), they provide the complete δint and δext functions for the learner’s model.

In the case of the previous naive ATPI algorithm, these objects were the value function
and the set of samples from the last iteration.

Since the learner implements the learning algorithm and since this algorithm is a sequence
of instructions, the learner itself can be written as a discrete events system2. We provide the
example of the naive ATPI learner in figure 14.3.

2Similarly to any instance of a Turing machine.

215

Chapter 14. The improved ATPI algorithm

0 0

0

0

0

∞

∞

begin
end
trial

idle

decide

info action

choose

create and init
"trial" DECTS

destroy "trial"

send action to "trial"
destroy "eval" DECTS

create "eval" DECTS
by cloning "trial" send action

to "eval"

Figure 14.3: The DECTS learner of naive ATPI

Figure 14.3 follows the intuitive representation of DEVS models. Circles represent ab-
stract internal states with their name and the associated ta function’s value, solid arrows
represent internal transitions and dashed arrows represent external transitions. Since the λ
output function is only called for internal transitions, the forked solid arrows represent the
output value.

The learner begins in state “begin”, with an initial policy and the knowledge of the
DECTS’s initial state. Since the learner is an executive model, it has the ability to control
the graph of coupled models and can create new models and link them together. This is
what the first transition to “idle” does. It creates the “trial” DECTS which is the main
experiment with which the interaction will take place. This DECTS is a GSMDP. Whenever
this DECTS has been initialized, it sends a first request to the learner for an action since,
in GSMDPs, decisions are possible at every state transition.

The learner then enters the forward search loop. The request for an action triggers an
external transition taking the learner to state “decide”. For this purpose, the algorithm in-
stantly creates all the “eval” simulations by cloning the “trial” DECTS in its current state.
Upon action requests, the learner sends the possible actions to the “eval” models and re-
trieves the resulting state and rewards in order to evaluate the Q-values of these actions.
When all “eval” models have returned their next state and reward, the external transition
to “choose” is triggered. In this state, the learner computes the optimal action by using its
internal SVR and the results from the “eval” models. Finally, it deletes all “eval” models
and sends the computed best action to “trial”.

This process goes on until the horizon is reached and “trial” sends an interrupt event.

216

14.2. Revisiting the idea of ATPI

Then, the learner makes the transition from “idle” to “end trial”. In this state, it computes
the V πn+1 value function and returns to “begin” by deleting the “trial” model.

A DECTS learner is a discrete event model describing the optimization procedure.
This model is an executive model in a DS-DEVS representation. It drives the
global optimization process by dynamically creating DECTS as recursive simulation
models. The internal state of the DECTS learner is composed of initial knowledge
about the problem and of so-called controller objects which are the internal tools
used to compute decisions.

14.1.3 Why DECTS?

The purpose of providing a DECTS formulation and the associated learner description is
twofold. First of all, the idea is to present clearly the essential properties of the systems
we wish to control and of the learning methods we apply to them. This presentation points
out the specificities of DECTS by setting them in the general framework of discrete events
processes.

Hence, DECTS do not constitute a new formalism, but rather an extension to DEVS
models trying to lay a bridge between discrete events simulation specifications and sequen-
tial learning optimization processes.

In particular, one important characteristic of DECTS models — for both the controlled
process and the learner — is that such a representation formalizes the optimization process
in the same language as the controlled system itself. This provides a first attempt at rep-
resenting an optimization process inside the framework of discrete event systems and opens
the door to interfacing heterogeneous optimization and simulation models in the framework
of discrete events modeling.

14.2 Revisiting the idea of ATPI

Having defined the family of systems we wish to control and pointed out their specification,
properties and limits, we now turn back to the ATPI algorithm and try to overcome the
flaws presented at the end of chapter 13. For this purpose, we investigate the question of
confidence which was raised in section 13.3.3. We perform this investigation in the framework
of reproducible DECTS by remarking that GSMDPs are indeed a specific class of reproducible
DECTS.

14.2.1 The initial ATPI intuition: simulating to explore and evaluate

Let us restart from the basics of ATPI and work our way to the improved ATPI algorithm
by highlighting where the mistakes were previously made and how we compensate for them.

First of all, applying ATPI to a temporal control problem implies having some initial
information. The available information about the optimization problem is that:

• We know the initial state3.
3Or a distribution over the possible initial states, but we won’t discuss this case.

217

Chapter 14. The improved ATPI algorithm

• Our problem has a very large state space.

• There exists a quantified notion of similarity between states, allowing to defined the
neighborhood of a state with respect to a given distance metric.

• We have a generative model which we represent as a DECTS.

Thus, we want to exploit our ability to simulate in order to explore and evaluate. More
specifically:

• Exploration: we take the option of letting the greedy policy simulation guide the
selection of the set of states upon which we will perform optimization.

• Evaluation: we rely on Monte-Carlo sampling to retrieve expected gain information
from the trajectory space.

Since our model is a reproducible DECTS with observable time, the presence of an explicit
time variable guarantees two important properties:

1. Simulations have a finite number of steps.

2. There is a zero probability of an infinite loop because such a loop would imply remain-
ing at the same time indefinitely which — we suppose — is physically impossible.

Finally, the approach of Monte-Carlo sampling is not useful in continuous state spaces if
we are not able to generalize the obtained samples to their neighbor states. This is partic-
ularly important in continuous state spaces since in this case, there is a zero probability of
visiting the same state twice4.

14.2.2 The need for generalization

Because of this last argument, we need a generalization method in order to identify states
which are similar to the ones previously visited and to infer these states’ relevant information
(value function for example) from the experience collected with their neighbors. Naive ATPI
used generalization for the value function only, since it took the option of never explicitly
storing the policy. But this is where this approach showed its main weakness: we need to
define where in the state space we can trust this generalization.

14.2.3 The problem of confidence

Trusting the generalization — the regressor in the naive ATPI case — in order to use it
implies building a notion of confidence. This confidence is a measure indicating whether the
output of the regressor is reliable or not. Graphically, as illustrated previously on figure 13.4,
this notion of confidence is linked with the density of samples collected to build the regressor
and to the consistency of the information these samples provide.

4The same argument actually holds for discrete large state spaces too, since the main problem behind such
a generalization is the identification of similarities between encountered situations.

218

14.2. Revisiting the idea of ATPI

More precisely, whenever we evaluate the regressor in s, we need to know if the previ-
ously collected experience is sufficient in order to make a prediction. In other words, we
need to determine (or arbitrarily decide) whether the samples we have collected constitute
a sufficient statistics of the statistical parameter V πn(s). Even more specifically, we need to
characterize a threshold on the minimal sufficient statistics for this variable.

In order to approximate a measure of the samples’ statistical sufficiency, we choose to
approach the density of these samples or — more formally — the probability density of the
underlying process which drove us to pick these specific samples during the last trials.

In the end, from a pragmatic and technical point of view, we need to estimate a proba-
bility density function for the process underlying the Monte-Carlo sampling operation. The
associated difficulty is that this probability distribution is defined over a high-dimensional
metric space (the state space). For this purpose, we can use several tools from the literature.
To list a few, we can mention One-Class SVM (OC-SVM, [Schölkopf et al., 2001]), Gaus-
sian Processes (see [Chen et al., 2006] for example) or Parzen windowing (see [Parzen, 1962]).

Once this density estimation has been constructed, we can use it as a confidence function
in order to decide when to trust the value function regression or not.

14.2.4 Using the confidence function to improve ATPI

Now that we have defined a confidence function attached to the last iteration’s regression,
we need to adapt the algorithm to use it. When we try to evaluate Qπn(s, a) values, the
straightforward use of this confidence function is to do the following. As in the naive ATPI
case, we still sample the next state using a clone DECTS of the current “trial” DECTS. If
the sampled state corresponds to a state for which the confidence function returns true, then
we consider we can safely use the regressor.

However, if the confidence function returns false, it means we haven’t had enough in-
formation around the sampled state to make any prediction as to the value of policy πn in
this state. In this case, we need to acquire the needed information and hence, we need to
simulate πn from this state until we reach a state in which we trust the regressor or until we
reach the horizon.

But if we want to simulate, we need a control policy for the DECTS. This means we
have stored the policy from the previous iteration. Although naive ATPI avoided explicit
instantiation and storage of the policy, this seems now necessary to compensate for the confi-
dence problem. In the end, it means our DECTS learner has at least three different internal
objects: a value function describing the last policy’s value, the associated confidence function
and the last up-to-date policy.

14.2.5 Storing policies for ATPI

Computing and storing full policies is a heavy handicap for MDP algorithms. Computing
full policies seems a very unfavorable compromise since most of these policies’ actions will
never be used before being replaced by improved actions. Moreover, storing the policy in a
memory-saving fashion might become quickly problematic. Consequently, we wish to keep
the online policy instantiation feature of ATPI while introducing a way to store previous

219

Chapter 14. The improved ATPI algorithm

improvements to the policy.

ATPI is initialized with a policy covering the whole state space. This policy does not
have to be an explicit, fully-instantiated representation of the s 7→ a function but it needs
to provide a way of computing the action anywhere in the state space. It can consist in
hand-made decision rules, heuristic functions, etc. The same way RTDP is initialized with a
heuristic value function, ATPI starts with an initial policy which can be described in a very
synthetic manner.

Along the iterations, this initial policy is “patched”. Namely, it is locally replaced by
the optimized actions in the states which have been visited by the trials. Consequently,
each iteration of ATPI adds a new patch upon the last policy. In other words, we define
incremental, partial policies which come correcting the last global policy.

Since we take this option of “patching” the policy, we are confronted with two problems.
The first problem deals with storing a pile of partial policies along the iterations. This prob-
lem is purely practical: it is a matter of compactly storing each partial policy and storing a
pile of these compact representations. It might become problematic if the number of patches
increases a lot, but we expect this number to remain low because it corresponds to the policy
iteration’s iteration number before convergence.

Along the iterations, patches are piled upon the initial policy. Whenever the policy is
asked for an action, the stack of patches is unpiled and the first applicable patch serves to
compute the action returned.

This brings the second problem which is the same as the value function confidence prob-
lem: since the optimized actions are computed online in the sample states visited by the
trials, we need to generalize these actions to the neighbor states and thus we need to classify
which states map to which action.

Hence, the problem of storing policies actually hides a problem of classifying actions over
states and generalizing local sampled information to local continuous values. But it also deals
with evaluating the “support states” of each patch, which corresponds in the end to defining a
confidence function for each patch, similarly to the confidence function for the value function.

14.2.6 A full statistical learning problem

In the end, the question of generalization in our approach leaves us with a full statistical
learning problem:

We need to infer a value function from a set of samples and to build a regressor as well
as a density estimator from these samples. Moreover, since we decided to simulate πn in the
states for which we are not confident, we will receive new samples for V πn during iteration
n + 1 and thus we need to incrementally integrate these samples into the generalized value
function.

Hence, estimating policy π’s value function is an online incremental regression prob-
lem.

220

14.3. The improved ATPI algorithm

Similarly, the value function’s confidence function needs to be updated at the same time
as the value function is updated.

Estimating the confidence function for V πn is an online incremental density esti-
mation problem.

Then, we need to generalize and compactly store the action experience from iteration
n in a “patch” for the global policy obtained so far. Since we will never need to simulate
the policy in a state where the value function’s confidence function returns true, the classi-
fication scheme for the policy needs not be online. At the end of each iteration, we need to
build a classifier indicating the latest improved actions, corresponding to the last set of trials.

Constructing the generalization for the policy is an offline (between iterations)
batch classification problem.

But to efficiently patch the global policy with the latest classifier, we need to define where
this classifier applies, and thus we have the same kind of confidence estimation function to
build for the policy than we did for the value function.

Our incremental partial policy construction via the “patching” method implies an
offline probability density estimation problem.

Finally, we are left with a complete statistical learning problem which comes directly from
the very nature of the process we want to control: large state spaces and continuous variables.

14.3 The improved ATPI algorithm

14.3.1 Algorithm overview

The improved online-ATPI (iATPI) algorithm relies on the construction of a regressor, a
classifier and the corresponding confidence functions. We will write Vn the regressor for the
samples obtained at iteration n, πn the corresponding classifier and CVn and Cπn the asso-
ciated confidence functions. Accordingly, π0 designates the initial (eventually implicit) policy.

The improved ATPI algorithm is presented in algorithm 14.15.

For clarity, in this algorithm, we separate the training sets for the value function and
for the policy into two distinct databases: actionDB holds pairs of states and actions while
valueDB contains pairs of states and samples of the value function. These two databases
are built using the successive execution paths issued from the different simulations and trials.
Execution paths are noted σ.

The trainRegressor and trainClassifier procedures actually also build the associated
confidence functions. The convertExecutionPathToValueFunction procedure performs the

5This presentation differs slightly in the notations from our initial introduction of iATPI in [Rachelson
et al., 2008c].

221

Chapter 14. The improved ATPI algorithm

backward cumulative sum of rewards in a given execution path in order to build a set of value
function samples. The other procedures have effects corresponding to their names.

As explained in the previous sections, iATPI works the same way as ATPI, by perform-
ing forward search in the state space, guided by greedy policy simulation and using local
generalization. The confidence problem is addressed through the introduction of the CVn
and Cπn functions which indicate when it is absolutely necessary to gather more simulation
samples in order to choose between actions. In the end, this implies generating more sim-
ulations but it also limits the computational impact of these simulations by stopping them
as soon as a new confidence region is entered. This is the result of the “while” condition in
the simulateWithStop procedure: the simulations are stopped as soon as a state for which
CVn(s) = true is encountered.

It is interesting to note that the values of Nsim and Na can be set by hand but can also
be automatically tuned by using a statistical likelihood test on a set of samples for the value
function and the Q-values. We will present this option a little further.

14.3.2 Writing the algorithm in the framework of DECTS

Figure 14.4 shows the improved ATPI algorithm as a DECTS controller. This learner’s inter-
nal objects are the regressor, classifier and confidence function defined above. Graphically,
the model presented in figure 14.4 is the same as the one for naive ATPI. The main difference
lies in the bottom right transitions which actually define the soundness of Q(s, a)’s evalu-
ation: these transitions are triggered differently with iATPI than with ATPI. With naive
ATPI, the transition from “info” to “action” and back was triggered only once per “eval”
model, regardless of the final state of the “eval” model. On the contrary, with iATPI, the
“eval” model continues its simulation — and thus its action requests — as long as it does
not reach a confidence state. Hence, this “info” – “action” loop can be triggered more than
once per “eval” model with iATPI.

More specifically, during an iATPI run, when in state “info”, the learner waits for action
queries from the “eval” models. Any such query takes the learner to state “action”, where
it computes the action to send to the “eval” model which requested it, based on the current
model’s observation. Then the learner instantly returns to state “info”, waiting for other
requests. The first action sent to an “eval” model is the a test action for Q(s, a). Then
actions are sent using the latest policy πn. This process continues as long as the state of the
“eval” models correspond to states of unconfidence. As soon as a state for which CVn(s) =
true is entered, the transition from “info” does not go to “action” but to “choose”. This
stops the evaluation simulations in states for which we are confident and thus corrects the
problem raised by naive ATPI.

Then the process goes on as for naive ATPI: the value function is updated and the Q-
values are used to select the action sent to the “trial” DECTS process.

The interaction between the ATPI algorithm implemented as a DECTS learner and the
controlled DECTS itself is illustrated in figure 14.5. This interaction follows the ideas of
DS-DEVS dynamic models creation and linking, the recursive simulation design scheme and
the discussion of section 14.1.2.

222

14.3. The improved ATPI algorithm

Algorithm 14.1: Improved online-ATPI: iATPI
main:

input: π0, s0
repeat

valueDB.reset() /* new trial */
actionDB.reset()
for i = 1 to Nsim do

σ.reset()
trialProcess.init(s0)
while horizon not reached do

a =bestAction(s)
trialProcess.activateEvent(a)
(s′, r)← trialProcess.step()
σ.add(s, a, r)

valueDB.convertExecutionPathToValueFunction(σ)
actionDB.add(σ)

Vn, CVn ← trainRegressor(valueDB) /* decision objects */
πn, Cπn ← trainClassifier(actionDB)

until termination

bestAction(s):
for a ∈ As do

Q̃(s, a) = 0
for j = 1 to Na do

Q̃(s, a) = Q̃(s, a)+ simulateWithStop(s, a) /* test the actions */

Q̃(s, a) = Q̃(s,a)
Na

return arg max
a∈A

Q̃(s, a)

simulateWithStop(s):
σeval ← ∅
evalProcess = trialProcess.clone()
evalProcess.activateEvent(a)
(s′, r)← evalProcess.step()
Q← r
s← s′

while horizon not reached and CVn(s) = false do /* explore until confident */
a = πn(s)
evalProcess.activateEvent(a)
(s′, r)← evalProcess.step()
Q← Q+ r
s← s′

σeval.add(s, r)
Q = Q+ Vn(s)
valueDB.convertExecutionPathToValueFunction(σeval)
Vn, CVn ← reTrainRegressor(valueDB) /* update value function */
return Q

223

Chapter 14. The improved ATPI algorithm

0 0

0

0

0

∞

∞

begin
end
trial

idle

decide

info action

choose

create and init
"trial" DECTS

destroy "trial"

send action to "trial"
destroy "eval" DECTS

create "eval" DECTS
by cloning "trial" send action

to "eval"

Figure 14.4: The DECTS learner of improved ATPI

14.4 First experience with iATPI in practice — difficulties and initial
results

14.4.1 Statistical Learning tools

The general algorithm presented in the previous section can be implemented using various
tools from Statistical Learning theory. The following paragraphs explain the different choices
we have explored for improved ATPI.

Regression

For the regression part, the previous chapter explained why SVR were not the best choice.
The qualities we expect from our regression method are the following:

1. It should be unbiased since we need to evaluate the average of the samples.

2. It should be able to perform incremental learning in order to allow the addition of new
samples on the fly (during the simulateWithStop procedure).

3. It should be implemented in a compact, memory-saving fashion, in order to allow for
easy evaluation in a given state and low memory storage cost.

Few regressors actually meet these three requirements. To our knowledge, the LWPR
method of [Vijayakumar et al., 2005] corresponds to these needs. LWPR is actually a very
interesting choice since it defines receptive fields which correspond to a good estimation of
the value function’s confidence function.

224

14.4. First experience with iATPI in practice — difficulties and initial results

DECTSlearner
exeutivemodelVn, CVn , πn, Cπn optimization time

DECTS
reursivesimulationmodel�trial� DECTSdynamiallyreatesand linksthe �trial�model

trial time
DECTS

reursivesimulationmodel�eval� DECTS
dynamiallylonesand linksthe �eval�models

evaluationsimulations time
Figure 14.5: Illustrating the virtual different time references of the iATPI learner

225

Chapter 14. The improved ATPI algorithm

However, our experience with LWPR showed that it needed to see a lot a points before
converging to a good value function. The alternative to LWPR we have used for comparison
consists in storing all samples in a relational database. This way, we used efficient look-up
strategies in this database in order to find the neighbors of a given state and to perform local
averaging via Parzen regression.

Density estimation

For the case of the full database storage, Parzen windowing provides a straightforward im-
plementation to density estimation.

Similarly, for the LWPR case, we can use the maximum activation level of receptive field
as a confidence measure for the regressor.

In the general case, the technique of One-Class SVM (OC-SVM, presented in [Schölkopf
et al., 2001] for example) can provide good density estimation results but requires some fine
tuning of the kernel’s parameters.

We used these three techniques in order to compare the different versions of iATPI.

Classification

Support Vector Machines have proven themselves particularly efficient in classification prob-
lems where one needs non-linear separators between arbitrary regions in large dimension
spaces. For this reason, we turned towards the tools of Multi-Class SVM (MC-SVM) which
are a collection of standard two-class SVM classifiers performing a majority vote to discrimi-
nate between several different classes. A discussion on MC-SVM is provided in the LIBSVM
documentation in [Chang and Lin, 2001].

Similarly to the previous cases, in the case of raw database storage, the policy can be
determined by a majority vote among neighbor states. This actually provides the possibility
of defining stochastic policies6.

Building versions of improved ATPI without a regressor

It is interesting to note that one can build versions of improved ATPI in the absence of some
of the previous tools. For example, if one wishes not to store the value function and its
associated confidence function, then by default the confidence function for V returns false
and the algorithm turns out to be very close to the flavor of simulation-based Policy Iter-
ation presented in [Bertsekas and Tsitsiklis, 1996]. This approach implicitly throws away
samples after seeing them and does not remember any information as to the value function.
We call this “memory-less” version of iATPI “Monte-Carlo iATPI” since it fully relies on
Monte-Carlo sampling in order to gather information about the value function, and com-
pletely forgets the samples after seeing them.

6However we did not explore this feature.

226

14.4. First experience with iATPI in practice — difficulties and initial results

Similarly, one could use static regressors (unable to perform incremental online learning)
and thus use static value and confidence functions, compensating the unability to incremen-
tally enrich the regressor by using simulation more often. If one wishes to adapt the work
done on the previous chapter’s ATPI implementation, this might be the simplest way to do
— even though it does not exploit the full potential of improved ATPI.

Summary of the different versions of improved ATPI

Table 14.1 summarizes some possible options for iATPI as the cross product of the options
presented in the previous paragraph. These are the ones we have implemented and tried,
many more are possible. In the fourth column, “RF” stands for the LWPR “receptive fields”
which are Gaussian kernels defining the activation of local linear models in LWPR (see [Vi-
jayakumar et al., 2005] for details). In some cases, we gave names to the different versions
of iATPI, these names are indicated in table 14.1.

HH
HHH

HHH
HHH

πn +
Cπn

Vn +
CVn

None +
s 7→ false

SVR +
OC-SVM

LWPR + RF
activn level

Parzen regr.
+ window.

MC-SVM +
OC-SVM

Monte-Carlo
iATPI

“non-naive”
iATPI

compact
iATPI

—

local vote +
Parzen w.

— — —
full storage

iATPI

Table 14.1: iATPI versions

It is interesting to note that only the 4 rightmost versions of iATPI are fully incremental
versions, taking advantage of the samples for V πn collected during iteration n+ 1.

Looking at statistical learning tools for reinforcement learning under the light of what
[Anderson, 2000] illustrate — namely that policy-based methods might be more robust to
approximation than value function ones, because they generally build both the robust object
of a policy and the efficient estimation of a value function — provides an interesting hind-
sight for iATPI. Value estimation errors are not propagated through the iterations in the
iATPI approach since only the samples issued from trials experience are used to build the
value function estimation. Instead, approximation errors can lead to exploration difficulties
but this pathology is present for both value and policy based algorithms. Hence, the con-
junction of statistical learning tools with policy-centered methods seems to be a promising
way of tackling problems which present large and/or continuous state spaces and for which
approximation is often necessary.

14.4.2 Subsampling for iATPI

When running the previous versions of iATPI on the subway problem, we were confronted
with a new difficulty. The numerous clocks lead our discrete event system to have very short
time intervals between transitions and hence, very long trajectories. For instance, over a
half-day, the subway problem has trajectories of about 4000 points. These 4000 points cor-
respond to all intermediate states encountered by the process before reaching the temporal

227

Chapter 14. The improved ATPI algorithm

horizon. The problem associated with this large number of points per trajectory is that we
actually try to optimize the policy in each of these points. This might not be necessary
because of the following simple reason.

Imagine the process is in a given state where the learner finds an improved action, say
“remove train 3”. This action is activated and the next step takes the process to a new state.
Imagine now this last transition does not correspond to the removal of the train but to the
arrival of a passenger at station 5. This has no impact on the previous decision we took and
might need to recompute the same “remove train 3” action in this new state, even though
it was already activated (but not triggered). Similarly, it might be cumbersome to compute
better actions in all the sample states of a trajectory. The following paragraphs rephrase
this idea and extend it.

As an optional feature, one can further exploit the presence of the observable time vari-
able in the model. On top of having a notion of distance in the state space — allowing us
to define similarity between states — we also know that transitions leap forward in time by
increments corresponding to the clocks’ differences.

Thus, if one knows that these clocks’ difference values will be small compared to the
problem’s temporal horizon, it might be useful to consider that two consecutive states with
similar times will have similar optimal actions. This is particularly enforced by the fact that
most of our system’s transitions are not due to the action events but to exogenous uncon-
trollable events.

Consequently, in order to improve optimization efficiency and speed, one could decide to
only optimize actions once in a while (every 10 transitions for instance or when some specific
states are encountered) instead of doing so at each state change.

We call this feature “optimization subsampling” since it subsamples the states to opti-
mize among the sample states of an execution path.

Actually, incremental regression for the value function should leverage the need for sub-
sampling. When in state sn, finding the optimal action implies using the regressor and / or
simulating new trajectories. The incremental regression process integrates the new samples
used to compute the best action in sn into the value function before moving to sn+1. If
state sn+1 is indeed close to sn, then — because of these last samples — the confidence
function should return true and finding the best action in sn+1 is only a matter of sampling
the following states when testing actions. This illustrates why incremental regression should
improve the performance of policy optimization. However, the process cloning operation, the
next state sampling and the regressor’s interrogation are still non-trivial operations, slowing
the optimization process. Hence, we keep the subsampling optional feature anyway in order
to facilitate policy search.

14.4.3 An example of implementation using LWPR and MC-SVM

Implementation overview

Before presenting this implementation, we provide a short reminder on LWPR and MC-SVM.

The Locally Weighted Projection Regression algorithm of [Vijayakumar et al., 2005] is

228

14.4. First experience with iATPI in practice — difficulties and initial results

a local learning regression algorithm. The regression is computed as a combination of local
linear models. The weight associated with each linear model is the level of activation of a
Gaussian model. Each of the Gaussian models is called a receptive field. These receptive
fields define a notion of locality and incrementally adapt their shape to new samples, in the
flavor of Principal Component Analysis. The linear models are updated using Partial Least
Squares incremental regression. This allows to project samples onto a lower dimensional
space in order to compute the local linear regression. More specifically, when a new point is
added, if it activates some receptive fields, it triggers their update (the update of the Gaus-
sian model’s parameters and of the linear model). Else, if it does not activate any receptive
field, a new one is created, centered on this sample. This procedure makes LWPR a local
regression method and a fully incremental method. We refer the reader to [Vijayakumar
et al., 2005] for a more detailed and more rigorous presentation of LWPR’s properties.

Multi-Class Support Vector Machines (MC-SVM) are an extension to standard Support
Vector Classifiers (SVC). Instead of separating two distinct classes of object using non-linear
classifiers, MC-SVM need to classify a certain number of different classes of objects (as ac-
tions, in our case). This is done by defining a number of SVC separating two classes at a
time, then performing a vote between these SVC in order to decide to which class a point
belongs. For a more detailed discussion on MC-SVM, see [Chang and Lin, 2001].

The “compact iATPI ” version of iATPI presented in table 14.1 uses the tools that best
fit our requirements for Vn, πn, CVn and Cπn representations:

• Vn is implemented using LWPR. This representation is the only one allowing for ac-
tual incremental regression, using the sample points and discarding them after. It is
important to note that some kernel regression methods actually perform incremental
regression. However, an essential difference with LWPR is that most of these methods
actually keep track of all the sample points seen so far and incrementally extract a
subset of relevant points. For example, most Support Vector algorithms performing
incremental regression move points in and out of the support vectors set as new points
are added to the training set. On the contrary, once LWPR has seen a point, it can be
discarded without further storage. This yields a weakness and a strength of LWPR:
first it needs a lot a points to converge to a relevant value function and secondly, it is
a truly online incremental regression method.

• Another interest of using a local learning method as LWPR is that it automatically
provides a measure of confidence and locality. We used the maximum activation level
of LWPR’s receptive fields as a measure of confidence for CVn . This measure describes
how “close” one is to the nearest receptive field. The notion of distance being defined
by the covariance matrix of each receptive field.

• πn is implemented using MC-SVM. This representation actually proved itself to be
quite reliable.

• Finally Cπn was implemented using One-Class SVM (OC-SVM, [Schölkopf et al., 2001])
in order to estimate the probability density function of the distribution underlying the
set of points used to train the classifier.

Filtering with the confidence function can be efficient

The “compact iATPI ” version suffered from several drawbacks. The first drawback is illus-
trated on the two graphs of figure 14.6. These graphs were obtained by running 50 trajectories

229

Chapter 14. The improved ATPI algorithm

with the initial policy π0, incrementally inferring the value function with LWPR, and then
running an additional trajectory. On this trajectory, instead of using the points to train
LWPR, we simply observe the value prediction made by our regressed value function. The
solid lines correspond to the 50 training trajectories and the dashed curve is the prediction
curve along the trajectory.

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 500

 0 100 200 300 400 500 600 700

va
lu

e

time (min)

(a) Raw evaluation

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 500

 0 100 200 300 400 500 600 700

va
lu

e

time (min)

(b) Filtered evaluation

Figure 14.6: The interest of using confidence for regression

It is important to note that these trajectory were ran across the 21-dimensional state
space of the subway problem. We plot their values against time in order to make them read-
able but nothing guarantees that these trajectories will actually be close in the state space.

Figure 14.6(a) presents the regression’s estimated values in all encountered states during
the fifty first run. The large noise which seems to regularly send the value function to zero
illustrates the absence of receptive fields in the states encountered by this last simulation.
This confirms the fact that — even though the value evolution with respect to time was

230

14.4. First experience with iATPI in practice — difficulties and initial results

similar for the 50 previous simulations — the trajectories can be quite far from each other.
Hence, this is another illustration of what caused the weakness of naive ATPI.

On the other hand, figure 14.6(b) shows only the points returned by the regressor with
a confidence value above the confidence threshold. This operation filters the points which
are too far from any receptive field and thus justify both the use of the value function in
confidence points and the necessity of new simulations in non-confidence ones.

Nevertheless, an important caveat remains here. Even the filtered value function pro-
vides a noisy evaluation which is not fully satisfying. This is probably due to the fact that
we did not provide enough points to LWPR for training. With this problem we reach one
of the limits of such an implementation: even if simulating a GSMDP remains easier than
explicitly calculating its transition and reward model as an MDP, this operation remains
rather complex and takes time. Hence, we cannot fully consider that simulation is “free”
and there is a compromise to make between the number of simulations and the accuracy
of our regressors. In order to illustrate this compromise, it is interesting to note that fifty
simulation correspond to providing approximately 200000 points to LWPR for training. But
in dimension 21, this might still not be sufficient.

The compromise between simulation and regression

This is further illustrated by the behavior shown on figure 14.7.

Similarly to the previous figures, figure 14.7(a) represents the fifty trajectories obtained
by simulating the policy obtained after four iterations of the algorithm. Behind the fifty solid
lines corresponding to these trajectories we plotted the fifty-first evaluation trial as a dashed
line. This evaluation trajectory is reproduced on figure 14.7(b). Finally, figure 14.7(c) shows
the value function filtered by the confidence function.

This time, the Rπ(s0) random variable has a much larger standard deviation and fifty
samples might mot be enough to obtain a reliable estimate. Moreover, training LWPR with
noisy samples requires providing even more samples and the regression process might still
be unreliable here.

It is reassuring to note that only few points come through the filtering process, as shown
on figure 14.7(c). It means our confidence measure might be reliable. In particular, it is
important to see that no confidence point was found after time 450 — probably because
the trajectories diverge too much after this time. However, even though the value function
estimation’s of figure 14.7(c) strongly reduced the estimation variance, there remains some
questions concerning the accuracy of such an evaluation, especially because of the lack of
samples given to LWPR.

Even non-parametric methods require some tuning

Finally, it appeared that as the problem became more and more complex, the training and
evaluation of the LWPR regression took more and more time and eventually handicapped
the algorithm optimization time itself.

Our guess to explain this behavior was that the number of receptive fields and the asso-
ciated linear models increased to a point where updating the models took a lot of time. We

231

Chapter 14. The improved ATPI algorithm

-400

-200

 0

 200

 400

 600

 800

 0 100 200 300 400 500 600 700

va
lu

e

time (min)

(a) Fifty trajectories

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

va
lu

e

time (min)

(b) Raw evaluation

-150

-100

-50

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450

va
lu

e

time (min)

(c) Filtered evaluation

Figure 14.7: High variance estimation

232

14.4. First experience with iATPI in practice — difficulties and initial results

tried to verify this hypothesis by using different initializations for LWPR’s receptive fields.
LWPR is initialized with a given covariance matrix defining the default shape of a receptive
field. This covariance matrix is updated as new samples are processed in order to adapt
to the principal directions of the regression. This usually avoids overfitting and the local
explosion in the number of models. However, a bad initialization of this covariance matrix
can lead to many more receptive fields and to different accuracies.

We tried different initializations for this covariance matrix, using isotropic matrices rI
corresponding to a certain radius r. It is important to note that the “size” of a receptive field
grows as the radius diminishes, since this covariance matrix serves to define a dot product
for the activation levels of receptive fields. Using a small radius for the covariance matrix
leads to less receptive fields, more overlapping and less precision. However, as the radius
grows, after a certain threshold, we can except the receptive fields to be very small and thus
lead to poor generalization properties.

Consequently, in order for LWPR to perform an efficient regression, this initial covari-
ance matrix is very important. The following figures will illustrate several consequences of
using different radii. As previously, we will generate a training set with fifty trajectories
and will train LWPR with these trajectories. Then we will test the obtained regressor to
measure its accuracy. This accuracy can be measured in terms of the mean squared error
over trajectories or the maximum of these squared errors. We will also measure the training
time and will relate it to the number of receptive fields. Finally, we will illustrate again the
interest of confidence filtering on the mean squared errors.

Figures 14.8 to 14.11 illustrate these experiments. We tested several ranges of radii and
the most interesting part happens for r ∈ [0, 50].

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60

nb
R

F

radius

Figure 14.8: Number of receptive fields as a function of r

Figures 14.8 and 14.9 illustrate the linear relationship between the number of receptive
fields and the training time. This validates our initial hypothesis. Now, the goal would be
to find the best value of r for initialization.

233

Chapter 14. The improved ATPI algorithm

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

 0 10 20 30 40 50 60

tr
ai

ni
ng

 ti
m

e
(s

)

radius

Figure 14.9: Training time as a function of r

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60

m
ea

nS
E

radius

Figure 14.10: Mean Squared Error as a function of r

234

14.4. First experience with iATPI in practice — difficulties and initial results

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60

m
ax

SE

radius

Figure 14.11: Max Squared Error as a function of r

In order to build a computationally efficient regression, one could use the value r = 23,
corresponding to the minimum number of receptive fields. However, it is necessary to check
whether this value of r yields a relevant value function.

The maximum squared error shown in figure 14.11 illustrates again the fact that as soon
as a point is taken outside of a confidence region, its value should not be trusted because the
associated error can be very high. The “low” values at the beginning of this curve actually
correspond to the situation where only a few very large receptive fields are set over the whole
state space and the regression is then almost a linear regression. The error is then the one
of this linear regression. As the receptive fields become smaller, some parts of the state
space become uncovered and the evaluation there returns zero, thus yielding the even larger
maximum squared errors encountered for larger values of r.

Finally, figure 14.10 illustrates two important features. First, the solid line presents
the evolution of the mean squared error. This evolution shows a minimum in the error for
r = 10. Hence, it could imply that a compromise needs to be made between the number of re-
ceptive fields (optimal for r = 23) and the average error of the regressor (optimal for r = 10).

But the dashed line avoids making such a compromise. This dashed line shows the mean
squared error only for points corresponding to confidence regions. As one could expect, this
curve is below the solid curve since we have better knowledge of the value function in such
regions. The second important thing to notice is that the mean squared error for such a
filtered regression keeps decreasing as r increases. Hence, r = 23 seems to be a good value
for isotropic initialization of the receptive field’s covariance matrices.

Conclusion

These initial results concerning the “compact iATPI ” implementation raise new questions
and allow us to draw some conclusions:

• LWPR has all the desired theoretical properties required for our incremental regression

235

Chapter 14. The improved ATPI algorithm

problem.

• Using the confidence filtering technique improved drastically the quality of the value
function estimation.

• However, LWPR needs a lot of samples to provide a good estimation of the value
function and this can become problematic, especially if Rπ(s) has a large variance.

• Moreover, good optimization behavior requires some fine tuning of LWPR’s initial
parameters. We illustrated this on isotropic initial covariance matrices but anisotropic
ones could yield even better results7

For all these reasons, this attempt at building an efficient “compact iATPI ” version
resulted in incomplete results. Some of them reproduce the behavior of naive ATPI while
others fail to improve the policy. More time would be necessary to analyze the essential
reasons of this behavior and to reach a functional version of compact iATPI.

14.4.4 Full storage iATPI

The database trick

In order to build a comparison line between algorithms, we tried to implement a tabular
representation of values and policies for iATPI. Tabular look-up quickly becomes intractable
for our long trajectories yielding thousands of points. However, there remains the possibility
to exploit the fact that we defined a distance over our state space and, more specifically,
that we could sort all variables’ values. Hence, we defined a relational database for the value
function and for the policy. In these databases, elements can be sorted separately by each
variable. This reduces the complexity of searching for the neighbors of a given state.

The value database is composed of pairs (s, v) ∈ S × R and one can sort the database
using any of the variables in s. Hence, with m being the number of variables in s, the
worse case complexity of finding an element in the value database is m times the worse case
complexity of finding an element in a hash table. Since, the average lookup, insertion and
deletion times in a hash table is constant (O(1) in the number of elements), the average time
of looking up an element in the database is constant as well. Similarly, the policy database
is composed of a multi-sorted set of pairs (s, a) ∈ S ×A.

Such a representation is more efficient than a brute-force tabular representation and
trades time complexity against space complexity since it maintains m lists of references on
the stored items.

Online local evaluation

A strong interest of the database representation is that there is no computation time asso-
ciated to building the regressor since it is only composed of the set of collected samples.

When the learner needs to ask the value function for a state’s value, the regressor com-
putes online an average by looking up in the database the neighbors corresponding to the
question’s state. The efficient search in the database allows to compute such an average
quite easily and to define a notion of confidence based on the samples’ density around the

7For example by “stretching” the initial shape of the receptive fields along the axis of the temporal variable.

236

14.4. First experience with iATPI in practice — difficulties and initial results

requested state.

In order to use our database search ability to its maximum, we decided to implement the
following regression scheme. When one wishes to know the value of state s, two operations
are performed:

1. Find all the neighbors of s within a given hypercube. Start the search with the temporal
variable to prune the search space.

2. Compute the average value of all states si in this hypercube using a vector of weights
wi = w(si).

Note that the notion of locality is defined using a weighted L1 norm. However, the weights wi
were implemented using an L2 norm in the state space. The above operation corresponds to
performing a Parzen regression using a translation-invariant, non-linear kernel. This kernel
is equal to zero for states si such that ‖s− si‖1 > dmax, where dmax is the kernel’s outreach
and where the L1 norm is a weighted norm. In all states si for which ‖s− si‖1 ≤ dmax, the
kernel is proportional to ‖s− si‖2.

The same ideas drive the evaluation of the policy database: in the averaging operation,
the above “+” operator is replaced by a weighted majority vote. Such a classifier is very
similar to a k-nearest neighbors classifier.

The memory problem

Although we have not encountered this problem yet in our experiments, it appears obvious
that storing all points works only up to a certain limit. When the database’s size exceeds
the available memory, such an option is not feasible again and purely online incremental
methods such as LWPR become the only option since they store information in a more
compact fashion and do not need to keep track of previously seen points.

Automatic confidence calculation — adjusting Nsim and Na

We wrote earlier that our confidence function needed to be based on the density of sam-
ples. While this seems to be a good approximation when all random variables have the same
variance, it appears to be a poorer method when the variables start becoming really different.

This was illustrated by the high variance example in the LWPR experiments. We would
like to have a better confidence measure which allows us to have exactly the right number
of samples in the different parts of the state space.

Defining such a measure implies finding bounds for the sampling process. The following
paragraphs summarize the problem in terms of a stochastic process and presents the ap-
proach we chose.

Let us take the example of finding the right number of samples for a Q(s, a) estimator
(suppose we are in state s and we are testing action a). If we do not have any samples yet,
we need to simulate in order to gather the information necessary to the evaluation of Q(s, a).
Suppose now that we already have a set of n samples {qi}1≤i≤n corresponding to previous
experiments and our problem is to determine whether they constitute a sufficient statistics
for evaluating the expected value for Q(s, a). Let us formalize the problem the following way.

237

Chapter 14. The improved ATPI algorithm

Q(s, a) is the average of a random variable which we write Q. The qi are a sample path
of the stochastic process defined by drawing n occurrences of Q. Let us call Qi the random
variable corresponding to the ith draw. If we form the set of random variables:

Mn =
∑n

i=1Qi
n

Then the central limit theorem tells us that the probability law of Mn tends to a Gaussian
density of average Q(s, a) and of standard deviation σQ√

n
where σQ is the standard deviation

of the random variable Q.

In other words, we want to find the average Q(s, a) of Q and we know that — as n tends
to +∞ — Mn is drawn using a Gaussian distribution, centered on Q(s, a) and having a
decreasing standard deviation. Hence, we are going to sample new states (new qn) until this
standard deviation becomes small enough for us to use the mn realizations of Mn to evaluate
Q(s, a). Note that in practice, mn corresponds to Q̃n(s, a).

The problem is that one cannot directly access the parameters of Mn’s law. Hence, we
proceed differently. We make the approximation that after a certain number of samples,
Mn is indeed drawn using a normal law with parameters

(
Q(s, a), σ

Q√
n

)
. This is only an

approximation since the central limit theorem only indicates the asymptotical behavior of
Mn, when n tends to +∞. In practice, this behavior is often verified after a relatively small
number of samples8.

We build the σQn value which corresponds to the standard deviation’s unbiased estimator
for the first n draws of Qn9:

σQn =

√√√√ 1
n− 1

n∑
i=1

q2i −
n

n− 1
m2
n

Then we have the standard deviation of Mn’s approximate probability density function:

σMn =
σQn√
n

Finally, we can decide to stop the sampling when σMn becomes smaller than a certain
threshold k. Whenever this happens, the last mn is used for Q(s, a) and all sampled points
are added to the database.

We can avoid recalculating these mn and σn values from scratch each time we get a new
qn. For this purpose, we can use the following incremental expressions (and the intermediate
variable ζn) to get mn and σn from mn−1, σn−1 and qn:

8An empirical threshold on this number of samples is often expressed as “with the central limit theorem,
the infinite often starts at six”.

9One could also use the σQn =
q

1
n

ˆPn
i=1 q

2
i

˜
−m2

n estimator without much difference in the results, but

the latter is biased by a factor
q

n−1
n

.

238

14.4. First experience with iATPI in practice — difficulties and initial results

mn = mn−1 +
1
n

(qn −mn−1)

ζn = ζn−1 + q2n

σn =

√
1

n− 1
ζn − n

n− 1
mn

Suppose such an approximation of Mn’s behavior holds, ie. suppose Mn is indeed drawn
according to a N (Q(s, a), σMn) distribution and let us call H0 this null hypothesis. Then the
probability that mn was drawn with an error ε from Q(s, a) can be written:

Pr(|Q(s, a)−Mn| > ε|H0) = 1−
∫ Q(s,a)+ε

Q(s,a)−ε
1

σMn
√

2π
e

1
2

„
x−Q(s,a)

σMn

«
dx

In other words, the probability of correctly picking mn with at most an error ε from
Q(s, a) is given by:

Pr(|Q(s, a)−Mn| < ε|H0) = erf
(

ε

σMn
√

2

)

This provides — with the H0 hypothesis — a PAC-style guarantee on the evaluation of
Q(s, a).

Let H0 be the assumption stating that “the asymptotical behavior of Q̃n(s, a) to-
wards a distribution N (Q(s, a), σ) is a good approximation of Q̃n(s, a)’s law, early
in the sampling process” (ie. for small n). With this assumption, we can guarantee
that Q̃n(s, a) is an estimate of Q(s, a) with an error smaller than ε and with prob-
ability greater than erf

(
ε

σMn
√

2

)
. In other words, whenever σMn becomes smaller

than ε
erf−1(p)

√
2
, we can guarantee to have mn within ε of Q(s, a) with probability

at least p.

Such a bound can be compared with the Hoeffding bound stating that if Qn takes its
values within an interval of length d, then Pr(|Q(s, a) −Mn| ≤ ε) ≤ 2 exp(−2nε2

d2
). A more

thorough analysis of the asymptotic behavior of additive functions in Markov chains can be
found in [Maxwell and Woodroofe, 2000] or [Dedecker, 2008] with similar considerations and
bounds.

The consequence of such an adaptive confidence measure is to refine the sampling in
regions of large variance while avoiding oversampling in other regions. This procedure serves
to automatically stop the sampling for Na, hence it corresponds to an adaptive and auto-
matic tuning of the Na variable. Similarly, with such a procedure, Nsim does not need to be
entered by hand: a set of trials is stopped whenever the new value of the initial state has a
“σMn ” lower than the threshold given by the result above.

239

Chapter 14. The improved ATPI algorithm

We gave the previous bounds for the evaluation of Q(s, a) quantities. However, similar
bounds can be derived for the simple estimation of V π. During evaluations, the same proce-
dure can be used to enrich the database if the samples already collected result in a too large
σMn . More specifically, during an evaluation, we want to stop the rollout as soon as possible
if we encounter a state in which we can trust the value function. So whenever we reach s, we
can use our Parzen kernel to compute an estimated Ṽ π(s) and the associated σMn from the
existing neighboring entries in the database. If this weighted σMn is below the admissibility
threshold, we can stop the current simulation in s, else we need to continue sampling.

This last motivation of early stopping in the rollouts comes from a simple lesson from
experience. While we have a rather efficient generative model for our GSMDP (in terms of
computation time), simulation is not as costless as if we were simulating a standard MDP,
mainly because of the computation occurring behind the scenes to maintain the clocks’ val-
ues. Hence, simulation still comes at a cost which we might want to balance by performing
early rollout termination.

Conclusion

Consequently, the study of the database version of iATPI shows that one only needs three
parameters to build both the regressor and the classifier:

• A translation-invariant Parzen “window” defining the points which will be considered
to infer the value of a given state. This window is given as the W operator:

W :

S → F(S, {0, 1})

s 7→

S → {0, 1}
si 7→

{
1 if ‖si − s‖1 ≤ dmax
0 else

Such an operator is completely defined by the dmax parameter and the chosen L1

weighted norm.

• A “weight” operator w corresponding to the density of the Parzen kernel. Similarly to
the window operator, the weight operator is given as:

w :

S → F(S,R+)

s 7→
{
S → R+

si 7→ ‖si − s‖2
This operator is parameterized by the chosen weighted L2 norm. The complete corre-
sponding Parzen kernel is defined by the normalization of the product W (s, ·)w(s, ·).
• A confidence threshold k defining a limit on the σMn variables. While this limit is not

reached, sampling continues. This k value can be inferred from an estimation error ε
and a correct estimation probability p, using the PAC-style bounds given previously.

14.5 Conclusion

The results from the different versions of iATPI are still too incomplete to draw final con-
clusions as to the efficiency of the method and to its interests and weaknesses. However,
the initial experiments presented above showed two complementary things. First, that the
question of using statistical learning tools was rooted in various problematics. Namely:

240

14.5. Conclusion

• Compactly representing and storing acquired experience.

• Generalizing experience to unexplored states in a statistically relevant fashion.

These problems are crucial to efficient learning in large state spaces, and even more impor-
tant in the case of continuous or hybrid state spaces.

Despite recent attempts at characterizing sound statistical learning systems for rein-
forcement learning (eg. [Ormoneit and Sen, 2002; Farahmand et al., 2008; Dimitrikakis and
Lagoudakis, 2008]), this question remains an open area of research to which we hope to
contribute with the first results of iATPI.

Secondly, these first results showed important features for a good implementation of
iATPI. It provided some insight at how to characterize the algorithm’s soundness and effi-
ciency and hence, at how to improve its performance.

The iATPI algorithm relies on efficient generalization, based on a sampling process.
Its first results pointed out possible weaknesses of Statistical Learning methods
concerning the unexplored parts of the state space and provided some insight as to
the statistical relevance of sampling.

Finally, the optimization of policies for Temporal Markov Decision Problems through the
iATPI algorithm builds on both the statistical learning objects and the presence of the time
variable. iATPI is our contribution to solving external-event temporal problems using these
statistical learning tools and exploiting the presence of time. Time is used in the following
features:

• Finite trials. The bounded temporal horizon guarantees the termination of trials. This
corresponds to defining absorbing terminal states in a classical MDP problem but in
the case of temporal problems, there might be a very large subset of these states since
the process might stop, at the temporal horizon, in any state of the state space.

• Structured dynamics. The time variable conditions the evolution of the problem more
than any other one. On this topic, as mentioned earlier, time could be replaced by
an other crucial variable. However, in practice, many time-dependent problems can
benefit of special temporal modeling. Hence, time remains the structuring parameter
of the problems dynamics.

• Structured policies. On top of using the statistical learning tools to extract the inherent
policy structure. Including time in the state space helped recovering — at least part of
— the behavior of a Markovian problem. In other words, observing time compensates
partially for the non-observability of event clocks. Hence, time is a crucial structuring
variable for the found policies.

Finally, our contribution to the resolution of Temporal Markov Decision Problems also
consists in the definition of the DECTS framework and its associated “learner” model which
builds a bridge between the reinforcement learning optimization community and the DEVS
simulation community.

241

Chapter 14. The improved ATPI algorithm

DECTS are an abstraction of the problems we want to capture as Temporal Markov
Decision Problems and a more general framework than MDPs. They constitute a
first step in the process of defining a common representation for the sequential
decision optimization processes and the simulation ones.

242

15
Conclusion

This chapter summarizes the progression of ideas followed throughout part III. It
gathers our contributions in a synthetic view and opens areas of perspective work.

15.1 Summary

Part III’s main focus has been centered on the question of solving explicit-event Temporal
Markov Decision Problems. Starting with the statement that such processes were often too
complex too represent as an MDP, we turned towards the general setting of DEVS theory to
represent the generative models of our systems. This brought our first contributions: we ex-
pressed our decision problem as a continuous time, hybrid GSMDP, analyzed the complexity
of the process and its non-Markovian behavior and finally bridged the gap from GSM(D)P
to DEVS models. This provided us with a general description of the system to control,
compatible for interaction with other discrete event systems.

Then we introduced the idea of greedy simulation for forward search in Asynchronous
Policy Iteration, yielding the RTPI algorithm. This algorithm is strongly inspired by the
ideas of Asynchronous Dynamic Programming of [Bertsekas and Tsitsiklis, 1996] and the
greedy exploration of [Barto et al., 1995] and [Bonet and Geffner, 2003b]. This idea is our
second contribution and comes from the statement that, for the Temporal Markov Decision
Problems we had, we knew the initial state, had a way to simulate a policy and wished to
limit the exploration of the state space to the most likely states.

These two first bricks of simulation and of algorithmic procedure then lead to define the
ATPI algorithm which makes use of the observable time of GSMDPs to avoid storing a policy
during an RTPI algorithm and to facilitate Bellman backups. The naive ATPI algorithm is
our third contribution and the first step towards its improved version. We tested ATPI on
the subway problem, showing at the same time very promising results and crucial weaknesses
due to the memoryless structure of the algorithm itself.

The initial results on naive ATPI drove us to several conclusions. First of all, we took
some distance with the — already quite general — framework of GSMDPs and tried to
abstract the core properties of the systems we wished to control. This lead us to define, as
our fourth contribution, Discrete Events Controllable Temporal Systems which are DEVS-
compatible discrete events systems, capturing the event-driven properties of GSMDPs, their

243

Chapter 15. Conclusion

non-Markovian behavior and the general class of temporal discrete event control problems.
One of the most important points in this contribution was to represent the simulated system
and the optimization process (the DECTS learner) in the same discrete events formalism,
using dynamic models and recursive simulation principles and introducing the idea of deci-
sion objects. This allows to consider an optimization process as a discrete event system and
to hierarchically build optimization procedures.

Finally, building on the DECTS description, we rebuilt the ATPI algorithm, taking
care to avoid the previously identified flaws. This lead to our last contribution, the iATPI
algorithm. iATPI brings together results from simulation theory, the algorithmic proce-
dure of RTPI and tools borrowed to the field of Statistical Learning. It aims at solving
high-dimension, continuous state space Temporal Markov Decision Problems, involving the
following features:

• Simulation-based exploration (greedy search),

• Simulation-based evaluation (Monte-Carlo evaluation),

• Local generalization of experience in the state space (Smoothness of the regressor /
classifier for the decision objects we consider).

Even though there was not enough time to extensively test iATPI, preliminary results
opened many areas of improvement. Namely, it provided hints concerning the statistical rel-
evance of the decision objects; it also defined a notion of confidence, which serves in guiding
the exploration for optimization; it finally showed the necessary properties of appropriate
tools for regression, classification and density estimation used in conjunction with iATPI.

15.2 Perspectives

Quite obviously, the first step in future work consists in testing extensively the different
implementations of iATPI. Testing should involve different versions regarding the statistical
learning tools used, but also dealing with very different benchmarks as the subway problem,
the airport problem, the Mars rover or the bi-agent coordination problem.

Building an efficient version of iATPI might imply exploring or defining other tools, in
order to build relevant value functions and policies. Further investigation and refinement
of the LWPR method (to compensate for its current slow learning feature or to adapt it to
classification problems in the flavor of Gaussian Processes for instance) is a possible area of
improvement.

Another interesting perspectives takes place within the DECTS framework. Having writ-
ten the simulated system and the learner in the same description language allows us to con-
sider the whole as a new discrete event system and to hierarchically build other optimization
systems. Among other things, this opens a door towards modular discrete optimization
systems implementation. More importantly, this opens a new perspective to verification,
validation and testing in a unified framework of discrete event systems.

244

Part IV

Conclusion

245

General conclusion

From the initial problematic of deciding, under uncertainty constraints, in the context of
non-stationary problems, we have explored two distinct modeling fields, both corresponding
to extensions of classical Markov Decision Processes.

We first made the assumption that an “all-integrated” stochastic model of the process to
control was readily available under the form of a TMDP. These TMDPs captured the notion
of implicit-event decision models in the presence of unbounded, continuous time and explicit
time-dependency. From this modeling framework, we focused on providing a sound basis to
its optimality equation, on improving its resolution scheme and extending its expressiveness.
This lead to two more general modeling frameworks: SMDP+ and — more importantly —
XMDP, which highlighted the interests and limitations of TMDP, generalized its optimality
equation and opened the door to the generalization of its resolution scheme.

But implicit-event decision models are often not available as such and it is much easier to
describe a temporal decision problem through explicit-event decision models. The drawback
of such models is that we are no longer able to optimize policies for them with the general
guarantees we had with MDPs. Hence, we focused our efforts on comprehending and formal-
izing these explicit-event models. This study brought us from the field of Discrete Events
Systems specification to the techniques of Statistical Learning, all serving the same purpose:
building a sound generic algorithm for explicit-events Temporal Markov Decision Problems.

The specific fields and contributions presented in parts II and III could be summarized
the following way:

• Part II focused on formalization of implicit-event decision models, extending the well-
known TMDP model to a more general framework of optimization (piecewise polyno-
mial representations) and introducing the general case of observable continuous time
with the XMDP formalization. Efforts in the resolution of such temporal problems
were directed at backward induction algorithms, performing a value iteration-like op-
timization in a prioritized way.

• Part III was oriented towards modeling of explicit event systems where inclusion of
the observable time variable partially compensated for the loss of Markov’s property.
Algorithmic contributions focused on forward search methods, using the generalizing
properties of Statistical Learning techniques to deal with high-dimensional hybrid state

247

spaces.

We won’t recall further here the contributions brought by the study of these two distinct
fields and will refer the reader to the conclusion chapters of their respective parts (chapters
10 and 15) for these contributions. Instead, it seems interesting to take a last look at the
very nature of the temporal variable, in order to draw some more general conclusions.

The discussion of section 2.3 — which underlined the differences and similarities between
standard MDPs and Temporal Markov Decision Problems — brought up three different
notions of time in the modeling context of stochastic processes: the process’ time (the suc-
cessive decision epochs numbering), the transition or sojourn time (the temporal extension
of transitions) and the physical time or clock (the measure the agent has by looking at its
watch). Since we remained in the discrete event framework throughout the thesis, our focus
was set on the two last notions, their relationships and dependencies. In the end, it appears
that:

• physical time can be dealt with like any other non-replenishable variable. The gen-
eralization from TMDPs to XMDPs is probably the best illustration we could have
found of such a property. Even if they define an unbounded time a priori, TMDPs
rely on the implicit assumption that the knowledge about non-stationarity is finite and
corresponds to a certain time interval. Hence, one could turn TMDPs back to the case
of continuous variable MDPs. However,

• physical time should not be dealt with like any other continuous variable in a Tem-
poral Markov Decision Problem. The first reason for this is the fact that time is the
structuring variable of the process: it conditions the transition functions, the reward
model and — consequently — the optimal policy. Giving time a special place in the
optimization process — as the TMDP and XMDP frameworks do — helps structuring
the optimization itself by taking advantage of the causality principle1. Furthermore,
the introduction of an observable continuous physical time variable in the GSMDP
framework — when the initial state is known — partially compensated for the loss of
Markov behavior due to the non-observability of the internal dynamics deciding the
sojourn times.

From the practical point of view, both the TMDPpoly and the iATPI algorithms — which
form the main algorithmic contribution of the thesis — can still benefit from improvements,
better understanding and better implementations. However, they both constitute a new
contribution to their respective fields and to the question of temporal planning and learning
under uncertainty.

Finally, this question of dealing with time is far from being closed. Different communities
adopted different formalisms to deal with it: temporal logic, temporal planning, TMDPs,
differential propagation equations, . . . all constitute distinct attempts at capturing the time-
dependency of decision problems and their inherent structure. We presented in this thesis
a contribution to the specific framework of decision under uncertainty, trying, at a modest
level, to lay bridges between communities (planning under uncertainty and discrete events
modeling for instance). However, both in our fields and in the general case, time retains its
puzzling aura, confirming that its study still necessitates more . . . time.

1direct consequence of the fact that time is a non-replenishable variable.

248

Appendix

249

A
Computing complex operations on piecewise polynomial functions

A.1 Basics

Real-valued coefficient polynomial functions are commonly used as an approximation frame-
work for continuous functions, for interpolation purposes or for compact representation of
basis functions. They constitute an easy-to-use representation because they allow for both
low memory cost storage of the function in a compact form (coefficients storage) and prac-
tical operations between functions.

The first application of polynomial functions to interpolation consists in Lagrange poly-
nomials. But one could also mention Bezier curves and, of course, the well developed theory
of spline functions (see [Ahlberg et al., 1967]).

Polynomials offer the possibility to turn complex functional operations into coefficient
manipulation. This makes the framework of polynomial interpolation particularly attractive.

However, an important misconception needs to be lifted here: polynomial functions —
especially Lagrange polynomials — are not always the “simplest” fitting curve. Indeed, as
the number of fitted points increases, performing exact interpolation implies using high de-
gree polynomials and thus introducing the corresponding inflexions and variations in the
fitting curve. Splines correct this problem by introducing discontinuities in the function or
in its derivatives.

This appendix presents some of the problems associated with computing operations at
the functional level on piecewise polynomial functions. Due to lack of time, this presentation
might be incomplete. All the algorithms mentioned here and other ones were implemented
in version 0.3 the POLYTOOLS library. This library is available at http://emmanuel.
rachelson.free.fr.

A.2 Common dangers of coefficient manipulation

Imagine trying to compute the difference of two polynomial functions, the first one being
p1(x) = 1

3x + 1 and the second one being p2(x) = 0.333333333333334x + 1. Depending on
how arithmetic operations are implemented on the specific machine used and on machine
precision, the resulting p3 = p1 − p2 polynomial might result in being 0 or εx where ε is a
very small number.

251

Appendix A. Computing complex operations on piecewise polynomial functions

While this is not a surprise when one is used to finite machine precision calculation, it
holds a danger for polynomial handling. When we wants operations to be automated, we
cannot afford to have such a random behavior in calculation results. We take the “graphical”
point of view and state that the two above possible polynomials for p3 are equal.

Another way to present this problem is simply to state that finite machine precision leads
to inexact results even when the formulas are exact. Hence, one should be careful about the
operations performed. For example, when looking for maxima of the f(x) = −x4 poly-
nomial, if the root finding algorithm used on the derivative returns an approximate result
x 0, then using the first non-zero derivative to determine whether the optimum found is a
maximum or a minimum is usually not a robust method. This is because it implies testing
whether a real value is exactly equal to zero or not and this specific testing is very error-prone.

Consequently, we take the option to state that a polynomial function can only be nu-
merically defined with respect to a maximum range of its argument x and with a threshold
parameter on the coefficients in order to avoid having ill-conditioned polynomials1. See for
example what happens if you take the remainder of the Euclidean division of a polynomial
by a second one that has a very small highest order coefficient: the resulting polynomial has
a huge highest order coefficient. This is particularly unwished and induces numerical errors,
it is even critical in the application of the high-level Sturm’s theorem.

Consequently, to insure numerical stability of polynomial handling, we adopt the follow-
ing finite precision criterion.

A polynomial function is numerically defined by the triplet 〈a,M, ε〉:
• a is the vector of coefficients. It contains n + 1 real values (n being the

polynomial’s degree).

• M is the definition span, it is the largest value of x, regardless of sign, which
will ever be presented to the polynomial function.

• ε is the precision threshold under which one considers a polynomial evaluation
to be null.

We introduce the following simplification scheme for numerical calculation stability.
Whenever a coefficient ai in a, corresponding to the degree i term verifies aiM i < ε,
this coefficient is set to zero.

A.3 Usual operations: polynomial arithmetic, evaluation and root find-
ing

Due to lack of time, we only provide a short review of these methods which have been more
widely developed in specifically dedicated books (see for example [Press et al., 2007]).

Addition and subtraction of polynomial functions is rather straight forward, given the
previous simplification scheme.

1By ill-conditioned polynomials, we mean polynomials which would have a very large ratio of A
a

where A
is the largest coefficient and a the smallest.

252

A.3. Usual operations: polynomial arithmetic, evaluation and root finding

Multiplication of polynomials corresponds to the convolution of their coefficient vectors.

Implementing a polynomial division scheme (Euclid division) can be done with minimal
complexity as presented in [Press et al., 2007], given the above simplification scheme.

Evaluation follows Horner’s method which relies on factored polynomial form:

p(x) = (((anx+ an−1)x+ an−2)x+ . . .)x+ a0

Still with the same simplification scheme, derivation and integration of polynomial func-
tions is an easy task. One should note however that these operation are no more guaranteed
to be commutative for ill-conditioned polynomials because of the simplification scheme.

Finally, for root finding, exact formulas exist for polynomials up to degree four (included).
Namely:

• degree 0, trivial case

• degree 1, linear case

• degree 2, Newton’s formula

• degree 3, Cardan’s or Sotta’s Formula

• degree 4, Ferrari’s or Descartes’s formula

Still these formulas should be handled keeping the finite precision problem, especially when
testing real numbers for equality to zero.

For polynomials of degree equal or greater than five, one often uses approximate meth-
ods. For this purpose, Sturm’s theorem — presented in [Sturm, 1835] — provides a very
nice dichotomy algorithm for isolating roots of a polynomial function. We recall this theorem
below, writing rem(p1, p2) the remainder of the division of p1 by p2.

Let p be a polynomial function. Let {pn}n∈[0,N] be the finite sequence of polynomials
defined by:

p0 = p

p1 = p′

pi = rem(pi−2, pi−1)
0 = rem(pN−1, pN)

Finally, let a and b be two real numbers such that a < b, p(a) 6= 0 and p(b) 6= 0
and let σ(a) (resp. σ(b)) be the number of sign changes in the (p0(a), . . . , pN (a))
sequence where zeros are not counted as sign changes.
Then the number of real, distinct roots of p in the [a, b] interval is σ(a)− σ(b).

Sturm’s theorem provides a nice theoretical way of bracketing roots. However, it is sub-
ject to the same numerical difficulties mentioned earlier, especially when some pi(a) values
become close to zero. This can lead to an erroneous number of expected roots in a given

253

Appendix A. Computing complex operations on piecewise polynomial functions

interval.

Sturm’s theorem is often used in conjunction with a Newton-Raphson gradient descent
algorithm in order to refine the value of the found root.

Our POLYTOOLS library offers implementations of all these algorithms.

The piecewise polynomial case derives directly from the polynomial function case.

A.4 Convolutions

We dedicate a specific section to the problem of computing the convolution of two piecewise
polynomial functions for two reasons:

• This operation is a non-trivial operations, imply many intermediate steps.

• It is one of the core functionalities needed for the TMDPpoly planner, which justified
the creation of a specific POLYTOOLS library.

The goal here is to calculate the function:

h(t) =
∫ ∞
−∞

f(x)g(t− x)dx

Where f is a piecewise polynomial function of degree A and g is a piecewise polynomial
function of degree B.

A.4.1 Preliminary: convolution of a piecewise polynomial function with any probabil-
ity distribution function

This preliminary paragraph shows what would happen if f or g was not a piecewise polyno-
mial function.

A.4.2 Problem introduction

Let us introduce the problematic of this section by starting with the simple case of solving
equation A.4 in the case of any function f (not necessarily polynomial), and a polynomial
function g (defined in one piece). We will write:

g(x) =
B∑
j=0

bjx
j

254

A.4. Convolutions

Thus:

g(t− x) =
B∑
j=0

bj(t− x)j

=
B∑
j=0

bj

j∑
k=0

Ckj t
k(−x)j−k

=
B∑
j=0

j∑
k=0

bjC
k
j t
k(−x)j−k

= b0

+ b1 (t− x)
+ b2 (t− 2tx+ x)

...

+ bB

B∑
k=0

tkCkB(−x)k

= tB
(
bBC

B
B

)
+ tB−1

(
bBC

B−1
B (−x) + bB−1C

B−1
B−1

)
+ tB−2

(
bBC

B−2
B (−x)2 + bB−1C

B−2
B−1 (−x) + bB−2C

B−2
B−2

)
...

+ t1
(
bBC

B−(B−1)
B (−x)B−1 + . . .+ b1C

1
1

)
+ t0

(
bBC

B−B
B (−x)B + . . .+ b0C

B−B
0

)
=

B∑
j=0

tj
B∑
i=j

biC
j
i (−x)i−j

=
B∑
j=0

tj
B−j∑
m=0

(−1)mbj+mC
j
j+mx

m

So we have:

h(t) =
∫ ∞
−∞

f(x)

 B∑
j=0

tj
B−j∑
m=0

(−1)mbj+mC
j
j+mx

m

 dx

Hence:

h(t) =
B∑
j=0

tj

(
B−j∑
m=0

(−1)mbj+mC
j
j+m

∫ ∞
−∞

xmf(x)dx

)

The quantity
∫∞
−∞ x

kf(x)dx (provided that this quantity exists) is the mth moment of a
random variable governed by a probability density function f . We will write it mk and thus:

h(t) =
B∑
j=0

tj

(
B−j∑
k=0

(−1)kbj+kC
j
j+kmk

)

255

Appendix A. Computing complex operations on piecewise polynomial functions

Therefore, one can conclude that in order to compute h for any f and for a polynomial
g of degree B, one needs to be able to compute the B first moments of f . Let us now turn
to piecewise polynomial functions. We will write βi the set of bounds limiting the definition
intervals of g. B is the number of definition intervals of g.

If g(x) is piecewise defined over the successive intervals [β1, β2], [β2, β3], . . . , [βB, βB+1],
with β1 < . . . < βB+1, then the function gt(x) = g(t − x) is defined over the intervals
[t− βB+1, t− βB], . . . , [t− β3, t− β2], [t− β2, t− β1]. We write gi,t the restriction of gt to the
interval [t− βi+1, t− βi]. Therefore, calculating h turns to:

h(t) =
B∑
i=1

∫ t−βi

t−βi+1

f(x)gi,t(x)dx

We have seen previously that on each [t−βi+1, t−βi] interval, gt(x) could be written as:

gi,t(x) =
B∑
j=0

tj
B−j∑
m=0

(−1)mbi,j+mC
j
j+mx

m

So, the calculation of h(t) can be written:

h(t) =
B∑
i=1

∫ t−βi

t−βi+1

f(x)
B∑
j=0

tj
B−j∑
m=0

(−1)mbi,j+mC
j
j+mx

mdx

So it turns out that calculating h for piecewise polynomial g functions means being able
to compute the quantity

∫ t−βi
t−βi+1

xkf(x)dx. While calculating f ’s moments was a standard
operation for most probability density functions, when the integral’s bounds are not infi-
nite anymore, the calculation becomes more complex and there is no standard method. This
introductory analysis illustrates why we chose piecewise polynomial probability density func-
tions in the TMDPpoly algorithm.

Now we can turn to our first objective in this section, namely calculate h(t) for piecewise
polynomial f and g functions. We will first show that h is piecewise polynomial too and will
analyze its definition intervals. This will break the calculation into integral calculations over
standard polynomials.

A.4.3 Breaking the problem into pieces

Let us call {αi}1≤i≤A+1 and {βj}1≤j≤B+1 the bounds of f and g’s definition intervals respec-
tively. The question in calculating h is to define intervals over which the definition of f and
g is constant in order to perform the integration.

Suppose we have found such intervals. Their bounds are either elements of {αi}1≤i≤A+1

or of {βj}1≤j≤B+1. Over one of these intervals, the f(x)g(t − x) product can be written as
a polynomial in t where the coefficients depend on x. More specifically, the coefficients of
this (f(x)gt(x))(t) polynomial are themselves polynomials in x. The interval’s bounds being
linear in t, we can deduce that over each of these intervals, h(t) is a polynomial function and
thus that h is piecewise polynomial.

Now we need to find these intervals, depending on the value of t. Figure A.1 clarifies the
problem.

256

A.4. Convolutions

f(x)α2 α3 α4

gt(x)t− β5 t− β4 t− β3 t− β2

Figure A.1: Example of definition intervals for a given t

It appears that for a very small t (close to −∞), the list of bounds defining intervals over
which both f and g have a constant definition is given by:

t− βB+1, t− βB, . . . , t− β2, α2, . . . , αA+1

We have dropped the β1 and α1 values on purpose to avoid inserting infinite valued
bounds into the list. Then, as t increases, t − β2 becomes larger than α2 and the bounds
permute. This happens for t = γ2 = α1 + β1. And the process goes on in the same manner,
t grows and as soon as one of the bounds switches position with an other, a new threshold γ
on t is defined, and the list of bounds is updated with the new list of bounds which have been
reordered. This provides an efficient manner of computing f(x)gt(x)’s definition intervals —
they are defined by the γk — and at the same time to calculate the list of bounds used for
the calculation of h on each of the t intervals defined by the γk.

Finally, for t ∈ [γk, γk+1], we have a list of bounds — written either as αi or as t− βj —
defining ordered intervals over which f and gt have a constant definition. The h(t) polynomial
over [γk, γk+1] is given by the sum over all of these intervals of the quantities:∫ bound[γk,γk+1],l+1

bound[γk,γk+1],l

f(x)g(t− x)dx

Between these bounds, f and g are simple polynomial functions. So our global problem
of computing h(t) transforms into lots of small problems of computing quantities like:∫ δ

γ
f(x)g(t− x)dx∫ t−δ

γ
f(x)g(t− x)dx∫ t−δ

t−γ
f(x)g(t− x)dx

Where γ and δ are real numbers. The next paragraphs explain how to perform such a
calculation.

A.4.4 Preliminary calculations

Let f and g be written as:

f(x) =
A∑
i=0

aix
i

g(x) =
B∑
j=0

bjx
j

257

Appendix A. Computing complex operations on piecewise polynomial functions

We want to calculate:

S(t) =
∫ bound2

bound1

f(x)g(t− x)dx =
∫ bound2

bound1

(
A∑
i=0

aix
i

) B∑
j=0

bj(t− x)j

 dx

Where bound1 and bound2 are either real valued bounds as in γ or “shifting bounds” as
in t − δ. Before we compute the integral itself, we can try to simplify the expression under
the integral sign. As calculated in the previous paragraph, one can write:

g(t− x) =
B∑
j=0

tj
B∑
i=j

biC
j
i (−x)i−j

Let bbj be the polynomial:

bbj(x) =
B∑
i=j

biC
j
i (−x)i−j

Introducing m = i− j, one can rewrite bbj as:

bbj(x) =
B−j∑
m=0

(−1)mbj+mC
j
j+mx

m

Let ~bbj be the vector containing the B − j + 1 coefficients of bbj :

~bbj =

bjC

j
j

−bj+1C
j
j+1

...
(−1)B−jbBC

j
B

And let ~a be the vector containing f ’s coefficients:

~a =

a0

a1
...
aA

One has:

f(x)g(t− x) =

(
A∑
i=0

aix
i

) B∑
j=0

bj(t− x)j

=

(
A∑
i=0

aix
i

) B∑
j=0

bbj(x)tj

We can introduce vector ~cj which is the discrete convolution of ~a and ~bbj :

~cj = ~a ∗ ~bbj
Vector ~cj has A+B − j + 1 coefficients, and the associated polynomial is:

cj(x) = f(x) · bbj(x)

258

A.4. Convolutions

Hence we have:

f(x)g(t− x) =
B∑
j=0

cj(x)tj

And if we call ~dj the vector of coefficients corresponding to the primitive polynomial2

dj(x) of polynomial cj(x):

~dj =

0
c0
c1
2
...

cA+B−j
A+B−j+1

Then we have:∫ bound2

bound1

f(x)g(t− x)dx =
∫ bound2

bound1

B∑
j=0

cj(x)tjdx

=
B∑
j=0

tj
∫ bound2

bound1

cj(x)dx

=
B∑
j=0

tj [dj(bound2)− dj(bound1)]

From this point, we need to distinguish cases depending on the nature of bound1 and
bound2

A.4.5 Calculating
∫ δ
γ
f(x)g(t− x)dx

This version is rather simple. Since one has the dj polynomials from the ai and bj coefficients,
one can write: ∫ δ

γ
f(x)g(t− x)dx =

B∑
j=0

tj [dj(δ)− dj(γ)]

A.4.6 Calculating
∫ t−δ
γ

f(x)g(t− x)dx

This calculation is a little more tricky since one of the bounds reintroduces t into dj . We
have: ∫ t−δ

γ
f(x)g(t− x)dx =

B∑
j=0

tj [dj(t− δ)− dj(γ)]

Let us split the problem again and write:

R(t) =
B∑
j=0

tjdj(γ)

Q(t) =
B∑
j=0

tjdj(t− δ)

2Since one can take any primitive polynomial, we choose the one with a null constant term.

259

Appendix A. Computing complex operations on piecewise polynomial functions

Calculating R(t) is rather straightforward. The main problem comes from Q(t). Cal-
culating dj(t − δ) is similar to the previous calculation of g(t − x). The indexes get more
complicated but the operation is the same, for each dj one obtains a family of dj,k polyno-
mials. For simplicity, we will write Dj = A+B − j + 1 and3:

dj(t− δ) =
Dj∑
k=0

dj,k(t− δ)k =
Dj∑
k=0

tkddj,k(δ)

So one finally has:

Q(t) =
B∑
j=0

Dj∑
k=0

tj+kddj,k(δ)

This provides an incremental way of building Q’s coefficients. One first builds the
q0 . . . qA+B+1 coefficients by initializing them to qk = dd0,k(δ). Then at the second pass,
j is incremented to one and one updates all q1 . . . qA+B+1 coefficients. q0 is not changed
anymore since j is equal to one. The process goes on, updating the higher order coefficients
of Q until we reach j = B for the last pass, which updates all qB . . . qA+B+1 coefficients.

Finally, the result is found with the difference between Q and R:∫ t−δ

γ
f(x)g(t− x)dx = Q(t)−R(t)

It is interesting to note that, by substituting x by t− y one can write:∫ t−δ

γ
f(x)g(t− x)dx =

∫ t−γ

δ
g(y)f(t− y)dy

But the bbj , cj , dj , Q and R polynomials yielded by the left hand side and the right hand
side terms of this equation are completely different in nature. For example, there are B cj
and dj polynomials respectively for the left hand side calculation, while the right hand side
provides A polynomials for cj and dj . Similarly, the Q and R are different but since the degree
of Q is necessarily higher than the degree of R, the highest order coefficients of Q must be the
same in both cases. This remark does not provide any implementation improvement (except
for debugging) but illustrates an interesting property of these polynomial’s operations by
establishing an equality between the Q−R difference in the two cases.

A.4.7 Calculating
∫ t−δ
t−γ f(x)g(t− x)dx

For this last integral, one can remark that the variable replacement y = t− x yields:∫ t−δ

t−γ
f(x)g(t− x)dx = −

∫ δ

γ
f(t− y)g(y)dy

If t− γ and t− δ were actually ordered with t− γ < t− δ, then δ < γ and it makes sense
to permute the bounds and to get rid of the minus sign:∫ t−δ

t−γ
f(x)g(t− x)dx =

∫ γ

δ
g(y)f(t− y)dy

Which takes us back to the case of constant bounds.
3The reader interested in comparing with the POLYTOOLS-0.3 implementation will find that dj(t−δ) has

been renamed to pj(t). All other variables are named consistently with the variables used in these paragraphs.

260

A.5. Common difficulties

A.5 Common difficulties

The programmer trying to implement an efficient version of a formal calculus library often
encounters a series of problems which are mainly due to the very difference in nature between
the abstract objects considered by the mathematical reasoning and the physical representa-
tions of numbers on a computer.

The excellent book of [Press et al., 2007] provides some hindsight on these problems. We
will simply illustrate it with two distinct examples.

A.5.1 The case of Sturm’s theorem

The application of Sturm’s theorem to find the number of real roots of a polynomial in a
given interval implies building Sturm’s sequence. This sequence is obtained by successive
division of polynomials. However, during this division operation, due to numerical limited
precision, some coefficients which should become zero take very small values. At the next
division, they yield other coefficients with very large values, and so on. This become prob-
lematic when the coefficients in question are the ones of highest degree.

An easy way to go around this problem, as mentioned in introduction, is to say that a
polynomial function f is given by its n+ 1 coefficients ai and its span M . M is the absolute
value of the largest scalar which will ever be given to the polynomial for evaluation; it is
an upper bound on the absolute values in the definition domain. Then, one can say that
whenever ai ·M i is below a certain threshold ε, ai is supposed equal to zero.

While this is fine for simple evaluation of polynomials, it can completely change the re-
sult of Sturm’s theorem. Setting arbitrarily some coefficients at zero can change Sturm’s
sequence or can shift the values obtained for the number of bounds inside a given interval.

Our experience with such problems lead us to results stating that some polynomials had
−2 roots in a given interval. This first example illustrates one of the caveat one should keep
in mind while working with formal coefficient calculus. Future versions of POLYTOOLS aim
at improving the treatment of such problems.

A.5.2 Finding extrema

Finding the maximum of a polynomial corresponds to finding the corresponding root in
its derivative. This is particularly important whenever one wishes to calculate the g(t) =
sup
t′≥t

f(t′) function in the piecewise polynomial case.

The variable precision schemes of computer languages can result in some inconsistencies
here. Without entering too much into the details, some operations require some successive
“==0.” tests (for details, see the above function in POLYTOOLS) which, depending on the
way they are implemented, can sometimes return true or false while they should always
return true.

Such inaccuracies result in completely erroneous output polynomials and can completely
change the face a result. The conclusion of this short caveat paragraph is that one should
always be very careful with both the implementation of such functions and the use of the
provided tools in POLYTOOLS .

261

Appendix A. Computing complex operations on piecewise polynomial functions

262

B
Short reminder of Support Vector Regression

This appendix presents a quick review of the notions at stake in Support Vector Regression
(SVR). It provides a entry point for basic theory and properties of SVR methods and of some
statistical learning methods used throughout the thesis. Instead of inserting them inside the
thesis, we chose to make further references to this appendix or to their respective authors
in order to ease the document’s reading. Our goal here is not to provide an extensive and
rigorous presentation of SVR techniques. For this purpose, we refer the reader to the quoted
authors who generally provide excellent comprehensive textbooks or references. Hence, this
appendix should only be seen as a quick reminder as well as an introductory basis for more
general questions about kernel methods for regression, classification and density estimation
which we won’t develop here.

B.1 Least-Squares Linear Regression

We first recall the idea of least squares linear regression:

Suppose we have a set of l samples {(xi, yi)}i=1..l, with xi ∈ Rn and yi ∈ R. We wish to
find the hyperplane of Rn+1 which fits best the {(xi, yi)}i=1..l set given a penalty term given
as the Euclidean distance between the hyperplane and the points.

If a is the hyperplane’s orthogonal unit vector, then the distance between a point x and
the hyperplane is given as xTa, so our goal is to minimize the quantity

∑l
i=1(xTi a− yi)2.

If one writes X the matrix of all xij coordinates and y the vector of all yi, then this
problem turns to a quadratic programming problem which has solution:

a = (XTX)−1XT y

B.2 ε-insensitive Support Vector Regression

The idea of SVR can be presented in a very similar concise manner. Suppose we have a set of
l samples {(xi, yi)}i=1..l, with xi ∈ Rn and yi ∈ R. We wish to find a function interpolating
these points. Linear regression would provide us with the best interpolating hyperplane in
Rn, but the samples do not necessarily follow a linear evolution. Projecting the samples into
a feature space is costly since feature spaces have higher dimension than n and because we
need to chose the features themselves and the dimension of the feature space. However, if
we were able to project our samples in a very large or infinite dimension feature space, then

263

Appendix B. Short reminder of Support Vector Regression

the linear regression method would be very appropriate.

Thus, the idea of SVR is to find an interpolating function having expression:

f(x) = 〈w|φ(x)〉+ b (B.1)

Where φ(x) is the projection of x into feature space, w is a vector of weights and b is the
linear regression offset.

Then, the standard SVR problem is expressed as a compromise between flatness of the
regressed function and the regression error. Flatness can be interpreted as insensitivity to
noise and is measured by the norm of the w vector. In classical ε-sensitive SVR, the regres-
sion error is a non-linear soft margin term. This error is equal to zero if |yi−f(xi)| < ε. This
corresponds to the fact that we consider null the regression errors as long as the yi points are
within a tube of radius ε around the f(x) curve in feature space. In order to formalize this
ε-insensitivity, we can introduce slack variables ξi and ξ∗i , quantifying the distance between
the insensitivity tube and the points. ξi represents the distance “above’ the tube and ξ∗i the
distance “below” as presented on figure B.1.

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

Figure B.1: Soft margin cost

Hence, the SVR problem can be expressed by using the trade-off constant C and the
slack variables ξi and ξ∗i :

minimize 1
2‖w‖2 + C

l∑
i=1

(ξi + ξ∗i)

subject to

yi − 〈w, φ(xi)〉 − b ≤ ε+ ξi
〈w, φ(xi)〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(B.2)

This non-linear optimization problem can be solved using its dual formulation. For this

264

B.2. ε-insensitive Support Vector Regression

purpose, we form the corresponding Lagrange function:

L =
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i)−
l∑

i=1

αi (ε+ ξi − yi + 〈w, φ(xi)〉+ b)

−
l∑

i=1

α∗i (ε+ ξ∗i + yi − 〈w, φ(xi)〉 − b)

−
l∑

i=1

ηiξi + η∗i ξ
∗
i

(B.3)

The optimal solution of the problem stated in equation B.2 is a saddle point of the above
Lagrange function with respect to the primal and dual variables. Consequently, the derivative
of L with respect to the primal variables (w, b, ξi, ξ∗i) is equal to zero at the optimality point:

∂bL =
l∑

i=1
(α∗i − αi) = 0

∂wL = w −
l∑

i=1
(αi − α∗i)φ(x) = 0

∂
ξ
(∗)
i

L = C − α(∗)
i − η(∗)

i = 0

By replacing in equation B.3, one obtains the dual optimization problem:

maximize −1
2

l∑
i,j=1

(αi − α∗i) (αi − α∗i) 〈φ(xi), φ(xj)〉 − ε
l∑

i=1
(αi + α∗i) +

l∑
i=1

yi (αi − α∗i)

subject to

l∑

i=1
(αi − α∗i) = 0

αi, α
∗
i ∈ [0, C]

(B.4)
So if we are able to express the dot product in feature space, directly as a function of

xi and xj , we do not need to explicitly define the feature projection φ. In other words, if
we can find a function k(xi, xj) such that k(xi, xj) = 〈φ(xi), φ(xj)〉 then the problem can be
written:

maximize −1
2

l∑
i,j=1

(αi − α∗i) (αi − α∗i) k(xi, xj)− ε
l∑

i=1
(αi + α∗i) +

l∑
i=1

yi (αi − α∗i)

subject to

l∑

i=1
(αi − α∗i) = 0

αi, α
∗
i ∈ [0, C]

(B.5)

And finally:

f(x) =
l∑

i=1

(αi − α∗i) k(xi, x) + b (B.6)

If one writes the Karush-Kuhn-Tucker conditions:
αi (ε+ ξi − yi + 〈w, xi〉+ b) = 0
α∗i (ε+ ξ∗i − yi + 〈w, xi〉+ b) = 0

It appears that for all points inside the ε-insensitivity tube, the αi, α∗i vanish. Because of
the same equations, one also has αiα∗i = 0 for all l samples. Thus, only a few αi are non-zero
and the final solution is sparse.

The points corresponding to non-zero α(∗)
i are called Support Vectors, they are the only

ones participating in the optimal solution.

265

Appendix B. Short reminder of Support Vector Regression

B.3 Variations on the theme of kernel-based regression

Most of the effort in SVR has been dedicated to designing efficient kernels in order to
represent expressive feature spaces. To cite only a few, one can mention:

• the polynomial kernel k(xi, xj) = (〈xi, xj〉+ c)p, used for instance in optical character
recognition,

• the sigmoid kernel k(xi, xj) = tanh(c+ d〈xi, xj〉), similar to the activation function of
common neural networks,

• the Gaussian kernel k(xi, xj) = e−
‖x1−x2‖

2

2σ2 , which is quite widespread and has the im-
portant property of being translation invariant.

Variations on SVR formulation yield the Least-Squares SVR formulation which reduces
the insensitivity tube to a null width and minimizes an L2 error term in the objective func-
tion (instead of the L1 term expressed in terms of slack variables in equation B.2). This turns
the resolution into a linear problem. However, the solution of LS-SVR is not very sparse.
Generally speaking, sparsity comes from the norm used for w and from the loss functions
used. These loss functions express the weight we put on outlier points, ie. points that do
not fit well our regression. The linear ε-sensitive formulation is the loss function of the stan-
dard SVR presented above, LS-SVR use L2 loss functions. Other functions corresponding to
other expected densities of samples (noise) have been explored such as Gaussian, Laplacian
or Huber’s robust loss functions.

An interesting alternative to SVR in kernel-based regression is the LASSO formulation
which yields interestingly sparse representations. This formulation is based on an L1 regu-
larization term (‖w‖1) and an L2 loss function.

266

List of Figures

1.1 Sequential Decision framework . 8
1.2 Fire fighting coordination . 12
1.3 Illustrating the origins of time dependency in the coordination problem . . . 13
1.4 Examples . 14

(a) The subway network in Toulouse . 14
(b) Airport taxiing . 14
(c) INRA to ONERA . 14
(d) Mars rover . 14

2.1 MDP transition . 18
2.2 Transition and reward functions . 19
2.3 Actor-Critic architecture . 23
2.4 Introducing random transition times: SMDPs 26
2.5 TMDP - basic elements . 28
2.6 Illustration of a GSMP . 30
2.7 Models relational map . 31

4.1 TMDP - basic elements . 50
4.2 Equivalence of SMDP+ and TMDP optimal policies 53
4.3 The policy equivalence problem . 53

5.1 Example of L(µ|s, t, a) function . 59
5.2 Illustrating equation 4.10 . 60

6.1 Discrete distribution example . 69
6.2 Illustrating the construction of V . 70
6.3 Illustrating algorithm 6.5 . 82

7.1 3 states problem - 1st version . 87
7.2 3 states problem - 2nd version . 87
7.3 Final value functions for the three states problem, first version 88
7.4 Evolution of the maximum priorities for the three states problem, second version 89
7.5 Final value functions for the three states problem, second version 90
7.6 Final value functions for the three states problem, second version modified . . 91
7.7 Mars rover problem — mission presentation 93

267

List of Figures

7.8 Duration probability of µ3 . 96
7.9 Probability of successful photo — L(µsuccess|s, t, take picture) 97
7.10 Evolution of the maximum priorities for the Mars rover problem 99
7.11 Evolution of individual iteration durations for the Mars rover problem 100
7.12 State p = 1, e = 40, im1 = 0, sa1 = 0, sa2 = 0 — Value function 100
7.13 State p = 3, e = 20, im1 = 0, sa1 = 0, sa2 = 0 — Value function 101
7.14 State p = 2, e = 20, im1 = 0, sa1 = 0, sa2 = 0 — Value function 102
7.15 State p = 5, e = 30, im1 = 0, sa1 = 0, sa2 = 0 — Value function 103
7.16 Structured policy in p = 3 for the rover problem 105

(a) Value function and policy in p = 3 when no goals have been completed
yet . 105

(b) Policy in p = 3 when no goals have been completed yet — 2D view . . . 105
7.17 Evolution of the maximum priorities for the Mars rover problem, version 5 . . 106
7.18 Evolution of individual iteration durations for the Mars rover problem, version 5106
7.19 UAV patrol problem — Reward rates . 108
7.20 UAV patrol problem — Priorities evolution, first version 110
7.21 UAV patrol problem — Update durations, first version 110
7.22 UAV patrol problem — Priorities evolution, second version 111
7.23 UAV patrol problem — Update durations, second version 111
7.24 UAV patrol problem — state (7, 7), iterations 40 and 41 113
7.25 UAV patrol problem — state (7, 7), iterations 66 and 67 113
7.26 UAV patrol problem — state (7, 7), iterations 237 and 238 114
7.27 UAV patrol problem — state (7, 7), iterations 304 and 305 114
7.28 UAV patrol problem — state (7, 7), iterations 408 and 409 115
7.29 UAV patrol problem — graphical interface . 115

8.1 The problem of action discretization . 120
8.2 Illustrative example . 121

11.1 Illustration of a GSMP . 159
11.2 Traffic lights . 161
11.3 DEVS atomic model with ports . 163
11.4 Coupled DEVS model . 164
11.5 DEVS atomic models for GSMPs . 166
11.6 Coupled DEVS model for GSMPs . 167

13.1 . 203
13.2 Subway optimization — SVR training time 203
13.3 . 204
13.4 The exploration for evaluation pathology . 207

14.1 Schematic representation of a DECTS as a DEVS model 212
14.2 Modeling a DECTS learner inside the discrete events framework 215
14.3 The DECTS learner of naive ATPI . 216
14.4 The DECTS learner of improved ATPI . 224
14.5 Illustrating the virtual different time references of the iATPI learner 225
14.6 The interest of using confidence for regression 230
14.7 High variance estimation . 232
14.8 Number of receptive fields as a function of r 233
14.9 Training time as a function of r . 234
14.10Mean Squared Error as a function of r . 234

268

List of Figures

14.11Max Squared Error as a function of r . 235

A.1 Example of definition intervals for a given t 257

B.1 Soft margin cost . 264

269

List of Figures

270

List of Algorithms

2.1 Value Iteration . 22
2.2 Policy Iteration . 23
6.1 Assembling V from the Q functions . 71
6.2 Assembling V and π from piecewise polynomial Q functions 72
6.3 Prioritized Sweeping . 74
6.4 Prioritized Sweeping for TMDPs . 77
6.5 Polynomial approximation . 81
6.6 TMDPpoly polynomial approximation . 83
12.1 Policy Iteration . 178
12.2 Real Time Dynamic Programming . 184
12.3 Labeled Real Time Dynamic Programming . 187
12.4 Real-Time Policy Iteration . 188
13.1 Online-ATPI . 193
14.1 Improved online-ATPI: iATPI . 223

271

List of Algorithms

272

Bibliography

Ahlberg, J. H., Nielson, E. N., and Walsh, J. L. (1967). The Theory of Spline Functions and
Their Applications. Academic Press, New York.

Ahn, M. S. and Kim, T. G. (1993). Analysis on Steady State Behavior of DEVS Models. In
International Conference on AI, Simulation and Planning in High Autonomy Systems.

Altman, E. (1999). Constrained Markov Decision Processes. Chapman & Hall/CRC, London.

Altman, E. and Shwartz, A. (1993). Time-Sharing Policies for Controlled Markov Chains.
Operations Research, 41(6):1116–1124.

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science,
126(2):183–235.

Anderson, C. W. (2000). Approximating a Policy can be easier than Approximating a Value
Function. Technical Report TR-CS-00-101, Colorado State University.

Andre, D., Friedman, N., and Parr, R. (1998). Generalized Prioritized Sweeping. In Neural
Information Processing Systems, pages 1001–1007.

Antos, A., Munos, R., and Szepesvari, C. (2007). Fitted Q-iteration in continuous action-
space MDPs. In Neural Information Processing Systems.

Atkeson, C., Moore, A., and Schaal, S. (1997). Locally Weighted Learning. Artificial Intel-
ligence, 11(4):76–113.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning Journal, 47(2–3):235–256.

Barros, F. J. (1997). Modelling Formalisms for Dynamic Structure Systems. ACM Transac-
tions on Modelling and Computer Simulation, 7:501–515.

Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, 72:81–138.

Baxter, J. and Bartlett, P. (1999). Direct gradient-based reinforcement learning: I. Gradi-
ent estimation algorithms. Technical report, Computer Science Laboratory, Australian
National University.

273

Bibliography

Bellman, R. E. (1954). The Theory of Dynamic Programming. Bulletin of the American
Mathematical Society, 60:503–516.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, Princeton, New
Jersey.

Benazera, E., Brafman, R., Meuleau, N., Mausam, and Hansen, E. A. (2005). An AO*
Algorithm for Planning with Continuous Resources. In Workshop on Planning under
Uncertainty for Autonomous Systems, at ICAPS.

Bernstein, D. S. and Zilberstein, S. (2001). Reinforcement Learning for Weakly-Coupled
MDPs and an Application to Planetary Rover Control. In Conference on Uncertainty
in Artificial Intelligence.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena Scientific.

Bertsekas, D. P. and Shreve, S. E. (1996). Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific. Originally published in 1978.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

Bonet, B. and Geffner, H. (2003a). Faster Heuristic Search Algorithms for Planning with
Uncertainty and Full Feedback. In International Joint Conference on Artificial Intelli-
gence.

Bonet, B. and Geffner, H. (2003b). Labeled RTDP: Improving the convergence of real-
time dynamic programming. In International Conference on Automated Planning and
Scheduling, pages 12–21.

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic Planning: Structural
Assumptions and Computational Leverage. Journal of Artificial Intelligence Research,
11:1–94.

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic Dynamic Programming
with Factored Representations. Artificial Intelligence, 121(1–2):49–107.

Bouyer, P., Cassez, F., Fleury, E., and Larsen, K. G. (2004). Optimal Strategies in Priced
Game Automata. In Foundations of Software Technology and Theoretical Computer
Science.

Boyan, J. A. and Littman, M. L. (2001). Exact Solutions to Time Dependent MDPs. Ad-
vances in Neural Information Processing Systems, 13:1026–1032.

Bradtke, S. J. and Barto, A. G. (1996). Linear Least-Squares Algorithms for Temporal
Difference Learning. Machine Learning, 22(2):33–57.

Bresina, J., Dearden, R., Meuleau, N., Ramakrishnan, S., and Washington, R. (2002). Plan-
ning under Continuous Time and Resource Uncertainty: a Challenge for AI. In Confer-
ence on Uncertainty in Artificial Intelligence.

Cappé, O., Moulines, E., and Rydén, T. (2005). Inference in Hidden Markov Models.
Springer.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu./tw/~cjlin/libsvm.

274

Bibliography

Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I. (2007). Simulation-based Algorithms for
Markov Decision Processes. Communications and Control Engineering. Springer-Verlag
London.

Chen, T., Morris, J., and Martin, E. (2006). Probability Density Estimation via Infinite
Gaussian Mixture Model: Application to Statistical Process Monitoring. Journal of the
Royal Statistical Society (series C), 55(1):699–715.

Coquelin, P.-A. and Munos, R. (2007). Bandit Algorithm for Tree Search. In Conference on
Uncertainty in Artificial Intelligence.

Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes. John Wiley &
Sons, Inc.

Cushing, W., Kambhampati, S., Mausam, and Weld, D. S. (2007). When is Temporal
Planning Really Temporal? In International Conference on Automated Planning and
Scheduling.

Dai, P. and Goldsmith, J. (2007). Multi-Threaded BLAO* Algorithm. In FLAIRS Confer-
ence, pages 56–61.

Dean, T. L. and Kanazawa, K. (1990). A model for reasoning about persistence and causa-
tion. Computational Intelligence, 5(3):142–150.

Dean, T. L. and Lin, S.-H. (1995). Decomposition Techniques for Planning in Stochastic
Domains. In International Joint Conference on Artificial Intelligence.

Dearden, R. (2001). Structured Prioritized Sweeping. In International Conference on Ma-
chine learning.

Dedecker, J. (2008). Inégalités de Hoeffding et théorème limite central pour les fonctions
peu régulières de châınes de markov non irréductibles. Numéro spécial des Annales de
l’ISUP, 52:39–46.

d’Epenoux, F. (1963). A Probabilistic Production and Inventory System. Management
Science, 10(1):98–108.

Dimitrikakis, C. and Lagoudakis, M. (2008). Algorithms and Bounds for Sampling-based
Approximate Policy Iteration. In European Workshop on Reinforcement Learning.

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-Based Batch Mode Reinforcement
Learning. Journal of Machine Learning Research, 6:503–556.

Farahmand, A., Ghavamzadeh, M., Szepesvári, C., and Mannor, S. (2008). Regularized
Policy Iteration. In Neural Information Processing Systems.

Feng, Z., Dearden, R., Meuleau, N., and Washington, R. (2004). Dynamic Programming
for Structured Continuous Markov Decision Problems. In Conference on Uncertainty in
Artificial Intelligence.

Ferguson, D. and Stentz, A. (2004). Focussed Dynamic Programming: Extensive Compara-
tive Results. Technical Report CMU-RI-TR-04-13, Robotics Insitute, Carnegie Mellon
University.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

275

Bibliography

Gilmer Jr., J. B. and Sullivan, F. J. (2005). Issues in Event Analysis for Recursive Simulation.
In Winter Simulation Conference.

Glynn, P. (1989). A GSMP Formalism for Discrete Event Systems. Proc. of the IEEE, 77.

Guestrin, C., Hauskrecht, M., and Kveton, B. (2004). Solving Factored MDPs with Contin-
uous and Discrete Variables. In Conference on Uncertainty in Artificial Intelligence.

Guestrin, C., Koller, D., and Parr, R. (2001). Max-norm Projections for Factored MDPs.
In International Joint Conference on Artificial Intelligence, pages 673–682.

Hansen, E. A. and Zilberstein, S. (2001). LAO*: a heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1-2).

Hasselt, H. and Wiering, M. A. (2007). Reinforcement Learning in Continuous Action Spaces.
In IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learn-
ing.

Hauskrecht, M. and Kveton, B. (2004). Linear program approximations for factored
continuous-state Markov decision processes. Advances in Neural Information Processing
Systems, 16:895–902.

Hauskrecht, M. and Kveton, B. (2006). Approximate Linear Programming for Solving Hybrid
Factored MDPs. In International Symposium on Artificial Intelligence and Mathematics.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T. L., and Boutilier, C. (1998). Hier-
archical Solution of Markov Decision Processes using Macro-actions. In Conference on
Uncertainty in Artificial Intelligence, pages 220–229.

Hoey, J., St. Aubin, R., Hu, A., and Boutilier, C. (2000). Optimal and Approximate Stochas-
tic Planning using Decision Diagrams. Technical Report TR-2000-05, University of
British Columbia - Vancouver, BC, Canada.

Howard, R. A. (1963). Semi-Markovian Decision Processes. In 34th Session of the Interna-
tional Statistical Institute.

Joslyn, C. (1996). The Process Theoretical Approach to Qualitative DEVS. In International
Conference on AI, Simulation and Planning in High Autonomy Systems.

Kaelbling, L. P. (1990). Learning In Embedded Systems. PhD thesis, Stanford University,
Department of Computer Science.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and Acting in
Partially Observable Stochastic Domains. Artificial Intelligence, 101:99–134.

Kearns, M. J., Mansour, Y., and Ng, A. Y. (2002). A Sparse Sampling Algorithm for Near-
Optimal Planning in Large Markov Decision Processes. Machine Learning, 49:193–208.

Kocsis, L. and Szepesvari, C. (2006). Bandit Based Monte-Carlo Planning. In European
Conference on Machine Learning.

Korf, R. E. (1990). Real-Time Heuristic Search. Artificial Intelligence, 42:189–211.

Kveton, B. and Hauskrecht, M. (2006). Learning Basis Functions in Hybrid Domains. In
AAAI Conference on Artificial Intelligence.

276

Bibliography

Lagoudakis, M. and Parr, R. (2003). Least-Squares Policy Iteration. Journal of Machine
Learning Research, 4:1107–1149.

Li, L. and Littman, M. L. (2005). Lazy Approximation for Solving Continuous Finite-Horizon
MDPs. In National Conference on Artificial Intelligence.

Littman, M. L., Dean, T. L., and Kaelbling, L. P. (1995). On the Complexity of Solving
Markov Decision Problems. In Conference on Uncertainty in Artificial Intelligence,
volume 11, pages 394–402.

Liu, Y. and Koenig, S. (2006). Functional Value Iteration for Decision-Theoretic Planning
with General Utility Functions. In National Conference on Artificial Intelligence.

Marecki, J., Topol, Z., and Tambe, M. (2006). A Fast Analytical Algorithm for Markov Deci-
sion Process with Continuous State Spaces. In International Conference on Autonomous
Agents and Multi-Agent Systems, pages 2536–2541.

Mausam (2007). Stochastic Planning with Concurrent, Durative Actions. PhD thesis, Uni-
versity of Washington.

Mausam, Benazera, E., Brafman, R., Meuleau, N., and Hansen, E. A. (2005). Planning
with continuous resources in stochastic domains. In International Joint Conference on
Artificial Intelligence, pages 1244–1251.

Mausam and Weld, D. S. (2005). Concurrent Probabilistic Temporal Planning. In Interna-
tional Conference on Automated Planning and Scheduling.

Mausam and Weld, D. S. (2006). Probabilistic Temporal Planning with Uncertain Durations.
In National Conference on Articifial Intelligence.

Mausam and Weld, D. S. (2007). Planning with Durative Actions in Stochastic Domains.
Journal of Artificial Intelligence Research, 31:33–82.

Maxwell, M. and Woodroofe, M. (2000). Central Limit Theorems for Additive Functionals
of Markov Chains. Annals of Probability, 28(2):713–724.

McMahan, H. B., Likhachev, M., and Gordon, G. J. (2005). Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In
International Conference on Machine learning, pages 569–576.

Melamed, B. (1976). Analysis and Simplification of Discrete Event Systems and Jackson
Queuing Networks. PhD thesis, University of Michigan.

Meuleau, N., Hauskrecht, M., Kim, K.-E., Peshkin, L., Kaelbling, L. P., Dean, T., and
Boutilier, C. (1998). Solving Very Large Weakly Coupled Markov Decision Processes.
In AAAI Conference on Artificial Intelligence.

Moore, A. W. and Atkeson, C. G. (1993). Prioritized Sweeping: Reinforcement Learning
with Less Data and Less Real Time. Machine Learning Journal, 13(1):103–105.

Munos, R. (2003). Error Bounds for Approximate Policy Iteration. In International Confer-
ence on Machine Learning.

Munos, R. (2007). Performance Bounds for Approximate Value Iteration. SIAM Journal on
Control and Optimization, 46(2):541–561.

277

Bibliography

Munos, R. and Moore, A. W. (2000). Rates of Convergence for Variable Resolution Schemes
in Optimal Control. In International Conference on Machine Learning.

Munos, R. and Moore, A. W. (2002). Variable Resolution Discretization in Optimal Control.
Machine Learning Journal, 49(2-3):291–323.

Neuts, M. R. (1981). Matrix-geometric solutions in stochastic models: an algorithmic ap-
proach. The John Hopkins University Press, Baltimore.

Nielsen, F. (1998). GMSim: a tool for compositionnal GSMP modeling. In Winter Simulation
Conference.

Ormoneit, D. and Sen, S. (2002). Kernel-Based Reinforcement Learning. Machine Learning
Journal, 49:161–178.

Parr, R. (1998). Flexible Decomposition Algorithms for Weakly Coupled Markov Decision
Problems. In Conference on Uncertainty in Artificial Intelligence.

Parzen, E. (1962). On the Estimation of a Probability Density Function and the Mode.
Annals of Mathematics and Statistics, 33:1065–1076.

Peng, J. and Williams, R. J. (1993). Efficient Learning and Planning Within the Dyna
Framework. Adaptive Behaviour, 1(4):437–454.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical
Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press.

Puterman, M. L. (1994). Markov Decision Processes. John Wiley & Sons, Inc.

Péret, L. (2004). Recherche en ligne pour les Processus Décisionnels de Markov : applica-
tion à la maintenance d’une constellation de satellites. PhD thesis, Institut National
Polytechnique de Toulouse.

Péret, L. and Garcia, F. (2003). On-line Search for Solving Large Markov Decision Processes.
In European Workshop on Reinforcement Learning.

Péret, L. and Garcia, F. (2004). On-line Search for Solving Markov Decision Processes via
Heuristic Sampling. In European Conference on Artificial Intelligence.

Quesnel, G., Duboz, R., Ramat, E., and Traore, M. K. (2007). VLE - A Multi-Modeling and
Simulation Environment. In Moving Towards the Unified Simulation Approach, Proc.
of the 2007 Summer Simulation Conf., pages 367–374.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in
speech recognition. In Proceedings of the IEEE, pages 257–286.

Rachelson, E., Fabiani, P., Farges, J.-L., Teichteil, F., and Garcia, F. (2006). Une approche
du traitement du temps dans le cadre MDP : trois méthodes de découpage de la droite
temporelle. In Journées Françaises Planification Décision Apprentissage. F. Garcia, G.
Verfaillie editors.

Rachelson, E., Garcia, F., and Fabiani, P. (2008a). Extending the Bellman Equation for MDP
to Continuous Actions and Continuous Time in the Discounted Case. In International
Symposium on Artificial Intelligence and Mathematics.

278

Bibliography

Rachelson, E., Quesnel, G., Garcia, F., and Fabiani, P. (2008b). A Simulation-based Ap-
proach for Solving Generalized Semi-Markov Decision Processes. In European Confer-
ence on Artificial Intelligence.

Rachelson, E., Quesnel, G., Garcia, F., and Fabiani, P. (2008c). Approximate Policy Iteration
for Generalized Semi-Markov Decision Processes: an Improved Algorithm. In European
Workshop on Reinforcement Learning.

Roth, V. (2004). The Generalized LASSO. IEEE Transations on Neural Networks, 15(1).

Sabbadin, R. (2002). Graph partitioning techniques for Markov Decision Processes decom-
position. In European Conference on Artificial Intelligence, pages 670–674.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimat-
ing the Support of a High-Dimensional Distribution. Neural Computation, 13(1):1443–
1471.

Smith, T. and Simmons, R. G. (2006). Focused Real-Time Dynamic Programming for MDPs:
Squeezing more out of a Heuristic. In AAAI Conference on Artificial Intelligence.

Smola, A. and Schölkopf, B. (1998). A Tutorial on Support Vector Regression. Techni-
cal Report NC-TR-98-030, Royal Holloway College, University of London, NeuroCOLT
Technical Report.

Sturm, C. (1835). Mémoire sur la résolution des équations numériques. Ins. France Sc.
Math. Phys., t. 6.

Sutton, R. S. (1995). TD Models: Modeling the World at a Mixture of Time Scales. In
International Conference on Machine Learning, pages 531–539.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. The MIT
Press, Cambridge, MA.

Teichteil-Königsbuch, F. and Infantes, G. (2008). Tr-FSP: Forward Stochastic Planning
using Probabilistic Reachability. In International Symposium on Search Techniques in
Artificial Intelligence and Robotics.

Tesauro, G. and Galerpin, G. R. (1997). On-line Policy Improvement using Monte-Carlo
Search. Advances in Neural Information Processing Systems, pages 1068–1072.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the royal
Statistical Society: series B, 58(1):267–288.

Vapnik, V., Golowich, S., and Smola, A. (1996). Support Vector Method for Function
Approximation, Regression Estimation and Signal Processing. Advances in Neural In-
formation Processing Systems, 9:281–287.

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). Incremental Online Learning in High
Dimensions. Neural Computation, 17:2602–2634.

Wang, G., Yeung, D.-Y., and Lochovsky, F. H. (2007). The Kernel Path in Kernelized
LASSO. In AISTATS.

Watkins, C. J. C. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge University.

Watkins, C. J. C. and Dayan, P. (1992). Q-learning. Machine Learning.

279

Bibliography

Wellman, M., Ford, M., and Larson, K. (1995). Path Planning under Time-Dependent
Uncertainty. In Conference on Uncertainty in Artificial Intelligence, pages 532–539.

Whiteson, S. and Stone, P. (2006). Evolutionary Function Approximation for Reinforcement
Learning. Journal of Machine Learning Research, 7:877–917.

Williams, R. J. and Baird, L. C. (1993). Tight Performance Bounds on Greedy Policies Based
on Imperfect Value Functions. Technical Report NU-CCS-93-14, College of Computer
Science, Northeastern University, Boston, Massachussetts.

Younes, H. L. S. and Simmons, R. G. (2004). Solving Generalized Semi-Markov Decision
Processes using Continuous Phase-Type Distributions. In AAAI Conference on Artificial
Intelligence.

Zeigler, B. P. (1976). Theory of Modeling and Simulation. Wiley Interscience.

Zeigler, B. P., Kim, D., and Praehofer, H. (2000). Theory of modeling and simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press.

280

