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Abstract: We introduce the Optimal Sample Selection (OSS) meta-algorithm for solving discrete-time Optimal Control
problems. This meta-algorithm maps the problem of finding a near-optimal closed-loop policy to the iden-
tification of a small set of one-step system transitions, leading to high-quality policies when used as input
of a batch-mode Reinforcement Learning (RL) algorithm. We detail a particular instance of this OSS meta-
algorithm that uses tree-based Fitted Q-Iteration as a batch-mode RL algorithm and Cross Entropy search as a
method for navigating efficiently in the space of sample sets. The results show that this particular instance of
OSS algorithms is able to identify rapidly small sample sets leading to high-quality policies.

1 INTRODUCTION

Many problems in the fields of Finance, Engineer-
ing or Medicine can be cast as discrete-time Optimal
Control problems. Such problems feature a dynamic
system that evolves over several time steps and re-
ceives various rewards along the way, depending on
how well it performs. Solving these problems con-
sists in generating a sequence of appropriate control
inputs, in order for the system to follow a trajectory
providing an optimal cumulated reward. In the gen-
eral case, this resolution rapidly becomes very chal-
lenging as the problem’s size grows. Optimal Control
problems have been studied by various communities
(e.g., Artificial Intelligence, Control Systems, Opera-
tions Research, or Machine Learning), each using dif-
ferent assumptions and formalisms to design algorith-
mic solutions.

Reinforcement Learning (RL) (Sutton and Barto,
1998) is a subfield of Machine Learning where one
tries to infer a good closed-loop control policy from
the sole knowledge of an observed set of one-step
system transitions and their associated rewards. Such
a set results from the sampling of the system’s un-
derlying dynamics and rewards. When this set of
samples is given at once, as an input of the learn-
ing algorithm, one talks of batch-mode RL. In recent

years, batch-mode RL algorithms, such as the tree-
based Fitted Q-Iteration (FQI) (Ernst et al., 2005) or
the Least Squares Policy Iteration (Lagoudakis and
Parr, 2003a) algorithms, proved successful in tackling
large Optimal Control problems. These methods re-
lied on appropriate approximation architectures to ef-
ficiently generalize information throughout the state
space. We now wish to understand how they could
be used for solving large-scale problems when one
has some freedom in the sample set input. In other
words, we break free from the standard batch-mode
RL hypothesis of a fixed, imposed sample set, and
suppose that a generative model is available, provid-
ing an unconstrained way of picking new sample sets.
Suppressing the constraint of a fixed, unquestionable
input sample set, and allowing this input to be con-
sidered as a problem’s variable, raises the question of
identifying a set of one-step transitions which maxi-
mizes the learning algorithm’s output, while keeping
the number of such one-step transitions low, so as to
extract good policies from the sample set in a reason-
able amount of time.

An immediate approach at answering this question
would be to collect experience uniformly and exten-
sively over the problem’s state-action space, as finely
as necessary to provide a good representation of the
system. But for large scale problems, as the dimen-



sion of this state-action space grows, such a sample
set becomes so large that processing it becomes in-
creasingly difficult (as reported in (Ernst, 2005) for
instance). Hence, the problem we address in this con-
text consists in identifying a training set of one-step
transitions which both has a limited size, and max-
imizes the algorithm’s output. For this purpose, we
concentrate on the question of finding the input sam-
ple set of size N that will generate the best possible
output policy, for a given batch-mode RL algorithm
and a predefined sample set size N.

After recalling, in Section 2, the main notions
of discrete-time Optimal Control and Reinforcement
Learning, we formulate the search for an optimal
fixed-size sample set as an optimization problem and
discuss its properties in Section 3. This leads to the
definition of the general Optimal Sample Selection
(OSS) meta-algorithm for solving Optimal Control
problems. Section 4 details a particular instance of
OSS, using the tree-based FQI algorithm and Cross-
Entropy search. Section 5 reports the method’s re-
sults on the “car on the hill” domain, empirically il-
lustrating the fact that small optimized sample sets
can lead to high quality policies. Building on these
optimization results, Section 6 discusses some more
general properties of OSS methods, highlighting their
strengths, weaknesses and perspectives. We particu-
larly emphasize their potential for solving large scale
Optimal Control problems. We finally summarize our
contribution and conclude in Section 7.

2 OPTIMAL CONTROL AND
REINFORCEMENT LEARNING

The framework of discrete-time Optimal Control
(Bertsekas and Shreve, 1996) covers decision prob-
lems where one tries to control a system, character-
ized by its state x ∈ X , through the application of a
sequence of discrete-time commands (ut)t∈N ,ut ∈U ,
in order to optimize a criterion based on the system’s
trajectory. Formally, such problems are described by
a four-tuple 〈X ,U, f ,r〉, where X is the state space in
which the system evolves, U is the set of all possi-
ble commands (or actions), f and r are respectively a
transition and a reward model as illustrated on Figure
1. In the deterministic case, at time step t, if command
u is applied while the system is in state x, a transition
is triggered to the next state x′ = f (x,u). For this tran-
sition, a reward r(x,u) is gained.

In the general case of stochastic Optimal Control,
the (stationary) transition model is actually stochas-
tic: f (x,u) is a distribution over the possible next
states x′, and one writes x′∼ f (x,u). The reward func-
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Figure 1: Transition and reward models of a discrete-time
control problem

tion then corresponds to the expected one-step reward
for the considered state-action pair. For the sake of
simplicity, we will consider deterministic problems in
Sections 3 to 5 and will extend our approach to the
stochastic case in Section 6.

A (stationary) closed-loop controller, or decision
policy, for a discrete-time Optimal Control problem
is a function µ : X →U (µ ∈ F (X ,U)), mapping each
state x to an action u to undertake. The criterion Jµ we
will consider in order to discriminate between policies
and define optimality is the standard, infinite horizon,
γ-discounted criterion. It maps each state x to the sum
of the γ-discounted successive rewards obtained when
applying policy µ from x, for an infinite number of
steps: ∀x ∈ X ,

Jµ(x)=
∞

∑
t=0

γ
tr(xt ,µ(xt)) with

{
x0 = x and
xt+1 = f (xt ,µ(xt))

Then, a policy µ∗ is said to be optimal if:

∀x ∈ X ,µ ∈ F (X ,U), Jµ∗(x)≥ Jµ(x)

The Jµ function of a policy µ is called its value
function. One writes J∗ the value function of any op-
timal policy.

RL algorithms aim at finding the best control pol-
icy when the transition and reward models of the pro-
cess are unknown. Instead, they rely on the collec-
tion of one-step transition samples from this under-
lying model. Each sample describes a one-step tran-
sition as a four-tuple (x,u,r,x′). These samples can
be obtained either from interaction with the physical
system or from a generative model. Hence, the stan-
dard input of any batch-mode RL algorithm is a set
of samples D = {(x,u,r,x′)}, approximating the tran-
sition and reward models, from which the algorithm
infers a policy µ∗D.

Since many applications of RL have very large
or multi-dimensional, continuous state spaces, find-
ing an exact representation of the optimal policy or
value function is often a very difficult task. Conse-
quently, there is a need for approximation methods
that are able to solve the policy inference problem in
a compact and efficient fashion (Buşoniu et al., 2010).
In order to overcome this difficulty, different value
function and policy approximation architectures have
been proposed in the literature, such as combinations
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Figure 2: Score of a sampling scheme

of linear features (Boyan, 1999), kernel methods (Or-
moneit and Sen, 2002), forests of trees (Ernst et al.,
2005) or classifiers (Lagoudakis and Parr, 2003b). All
these methods have greatly contributed to extending
the practical applicability of RL.

3 OPTIMIZING SAMPLE SETS

The general goal of batch-mode RL is, given a
sample set D as input, to compute a policy µ∗D which is
as close as possible to an optimal policy for the sys-
tem the samples were gathered from. The RL liter-
ature provides a whole span of efficient methods to
compute such a µ∗D.

Consider the context where a generative model of
the system is available. Such a model outputs a one-
step transition (x,u,r,x′) when presented with a state x
and an action u. In many Optimal Control problems,
such a model is often available. Since we have this
generative model, the input sample set D is no longer
imposed to us. The Optimal Control practitioner will-
ing to exploit batch-mode RL methods then needs to
answer the simple question of how to generate a good
sample set, prior to running his favourite algorithm.

The generic question of collecting data for batch-
mode RL algorithms has received little attention in
the literature, as this problem is usually tackled from
a problem-specific point of view (e.g., (Neumann and
Peters, 2009; Riedmiller, 2005; Ernst et al., 2006)).
We investigate a way to tackle this problem from a
generic, problem-independent, point of view.

3.1 Optimal sample selection

We consider the framework where the sample set’s
size is fixed and the batch-mode RL algorithm is
chosen, and, in this context, we introduce a meta-
algorithm1 for generating good sample sets D.

Consider a sample set D = {(x,u,r,x′)} and let us
introduce the set θ = {(x,u)} which we call the sam-
pling scheme leading to D. Although, in the determin-
istic case, there is a complete equivalence between θ

and D, this distinction will appear necessary when we
extend this contribution to stochastic systems in Sec-
tion 6. Suppose also that, for convenience, we ordered

1We refer to it as “meta” because it considers a generic
batch-mode RL algorithm among its inputs.

the different elements2 in D and θ:

D =
{(

xi,ui,ri,x′i
)}

i∈[1;N]

θ = {(xi,ui)}i∈[1;N]

Let sample(·) be the operator that computes D
from θ, using the generative model. Let also
policy inference(·) denote the batch-mode RL algo-
rithm used, taking a set D as input, and outputting a
policy µ∗D, which is optimal (or quasi-optimal) with
respect to an implicit, approximate problem, implied
by D. Let us finally assume there exists a generic cri-
terion score(µ), allowing to evaluate the actual quality
of a policy µ, when applied to the domain at hand.

Then we propose to identify a good training set by
formulating the following optimization problem (il-
lustrated on Fig 2):

θ
∗ ∈ argmax

θ∈(X×U)N
M(θ) (1)

M(θ) = (score◦policy inference◦ sample)(θ)

Hence, given an Optimal Control problem’s gen-
erative model, a batch-mode RL algorithm, and a size
N of sample sets, we call Optimal Sample Selection
method of parameter N (OSS(N)), an optimization
method searching for this optimal sampling scheme
θ∗ and returning µ∗ = policy inference(sample(θ∗)),
as shown in Algorithm 1.

Algorithm 1: General layout of the OSS(N)
meta-algorithm

Input: Batch-mode RL alg. policy inference(·),
Policy evaluation method score(·),
Generative model sample(·).

Define M(θ) as in Equation (1).
Compute θ∗ = argmaxθ M(θ).
Return policy inference(sample(θ∗)).

3.2 Creating instances of OSS(N)

The performance and behaviour of an OSS(N) in-
stance will depend on the choices made for score(·)
and policy inference(·), but also on the value of N
and on the optimization method used to solve prob-
lem 1. We provide hereafter some elements that may
help make these choices.

Score function. The score function should be
chosen in order to guarantee that a policy which max-
imises this score is indeed a policy which, when used

2For the sake of simplicity, in the remainder of the pa-
per, we will make a slight notation abuse and will refer to θ

indifferently as the set {(x,u)} or as the vector of variables
describing the elements of this set.



to control the real system, leads to high cumulated re-
wards. If the initial states from which the policy will
have to drive the real system are known, a suitable
choice for the score(·) function could be for exam-
ple the average return of the policy over these initial
states. These returns can be evaluated through Monte-
Carlo simulations, using the generative model.

Batch-mode RL algorithm. Most efficient batch-
mode RL algorithms rely on value function or policy
approximation architectures. A necessary condition
for the OSS algorithm to work well is that there must
exist a sampling scheme leading to high-performance
policies, which implies that these architectures need
to be able to represent accurately (at least) the optimal
policy. In general, this necessary condition is more
likely to be verified if the RL algorithm relies on a
rich, versatile approximation architecture. Note also
that from one RL algorithm / approximation method
to the other, the optimal sampling scheme θ∗ might
vary.

Choosing N. Picking N is a compromise between
policy quality and computation time. Larger N in-
crease the chance to find good policies, since the do-
main dynamics are captured more finely, but also re-
sult in increased computation burden. As Section
4 will illustrate, the main source of complexity of
finding an optimal θ comes from the dependency of
policy inference(·)’s complexity on N. Hence, look-
ing for very small sample sets seems desirable. On the
other hand, below a certain threshold on N, the search
space (X×U)N might not contain any element able to
generate a policy leading to an optimal score. When
N increases, there may exist more and more elements
in this search space that lead to policies having near-
optimal scores, and hence, finding such elements in
the resolution of problem 1 can be easier. Therefore,
the choice of N needs to balance the need for fine do-
mains representation with the processing abilities of
policy inference(·). In very large domains, the former
constraint will prevail.

Optimization algorithm. Computing or evalu-
ating the gradient ∂M

∂θ
, or any subgradient of M(·)

may reveal itself very difficult in the general case. In
some very specific cases of RL algorithms, approxi-
mation architectures, and criteria used for M, an an-
alytic formulation might be found, but we concen-
trate on the general case where such a gradient is
not available. As a matter of consequence, we need
to carefully choose the optimization method we will
use in order to find θ∗. Since we cannot use any
derivative of the M function, our resolution method
needs to be of “order zero”. These methods corre-
spond to gradient-free optimization methods (such as
EDA optimization, simulated annealing or genetic al-

gorithms). However, such methods require numerous
computations of M(·), each of them being costly in
terms of calculation resources because each implies
performing all the steps of the RL algorithm for which
the problem is defined. While the reduced number of
variables in θ helps leveraging this computational bur-
den, experience dictates it cannot make it negligible.
So this second constraint of M’s evaluation cost must
be carefully taken into account when choosing the op-
timization method.

4 OSS(N), TREE-BASED FQI AND
CROSS-ENTROPY SEARCH

In this section, we define an instance of OSS(N)
by using tree-based FQI as policy inference(·),
Monte-Carlo simulation as score(·), and Cross-
Entropy search as the optimization technique.

A simple and efficient way of searching for a func-
tion’s maximum — when computing its gradient is
not possible — consists in transforming this deter-
ministic problem into a so-called associated stochas-
tic problem3 (Kroese et al., 2006). Cross-Entropy
(CE) search (Rubinstein and Kroese, 2004) is one of
the methods that proved successful in this framework.
The key idea of CE search, applied to our RL set-
ting, is to let a distribution on (X×U)N converge to-
wards the best sample set, with respect to M(θ). Al-
gorithm 2 presents, in a nutshell, the CE optimization-
based OSS method applied to the computation of an
optimal policy with the tree-based FQI4 algorithm.

The algorithm starts with an initial distribution d
over the (X ×U)N search space. A family T of NT S
small sample sets is drawn from d, and for each sam-
ple set, the optimal policy is computed and evaluated.
This provides a set S of (θ,M(θ)) pairs, ordered by in-
creasing value of M(θ). Then, according to the impor-
tance sampling method of CE-optimization, the ρCE
best θ values are selected out of the initial S set; this
provides the S′ set and d is updated to fit the distribu-
tion of the sample vectors in S′.

In the particular case of continuous states and dis-
crete actions, we chose to represent d as a product
of Gaussian densities on the continuous X space (of

3The deterministic optimization problem is transformed
into a rare event estimation problem, which is then tackled
using an adaptive density estimation algorithm.

4For the sake of simplicity, we do not recall the details
on the tree-based FQI method and refer the interested reader
to (Ernst et al., 2005) for that purpose. The few parame-
ters this algorithm requires (number of iterations and tree-
related parameters) are generically denoted pFQI hereafter.



Algorithm 2: OSS(N) with FQI and CE search
Input: policy inference(D) = tree-based FQIpFQI ,

score(µ) = Monte-Carlo evaluation of µ on a
set of representative initial states,

sample(θ) = the generative model.
CE param.: initial distrib. d on (X×U)N , NT S, ρCE .
repeat

T = /0

for i = 1 to NT S do
θi = draw a sampling scheme according to d
T ← T ∪{θi}

foreach sampling scheme θi ∈ T do
D = sample(θi)
µ∗i = policy inference(D)
M(θi) = score(µ∗i )

S = sort {(θ,M(θ))} according to M(θ).
MCE = (1−ρCE)-quantile of S.
S′ = elements of T having scores above MCE .
d← maximum likelihood distribution over S′.

until no more improvement in MCE
θ∗ = draw a sampling scheme according to d
return policy inference(sample(θ∗))

dimension dX ), and Bernoulli distributions on the dis-
crete U space (of size dU ). More specifically, d uses a
Gaussian model for each of the NdX continuous vari-
ables of θ and a categorical distribution for each of the
NdU actions (which boils down to a Bernoulli distri-
bution when there are only two actions). We made the
hypothesis that all continuous variables in θ were in-
dependent, hence the covariance matrix of the global
Gaussian distribution on XN is diagonal. Although
this hypothesis can seem too naive, it still provided
good results as Section 5 will illustrate.

The main advantage of such a simple distribu-
tion model over (X ×U)N is the simplicity of its up-
date phase. According to the importance sampling
foundations of CE optimization, each Gaussian and
Bernoulli model in d is updated to fit the maximum
likelihood distribution of its corresponding variable in
S′. Updating the Gaussian distributions on the contin-
uous variables of θ corresponds to finding the average
and the standard deviation for the associated variable
in S′. Similarly, updating the distributions over the
discrete variables (the actions) corresponds to com-
puting the new thresholds of the Bernoulli distribu-
tions, by counting the occurrences of each action in
S′.

Similarly, NT S (and ρCE ) should be chosen by
keeping in mind that ρCE ·NT S elements of S will be
kept in order to update the distribution d. Hence, these
ρCE ·NT S should be informative enough to approxi-
mate a sufficient statistics for the new value of d.

For domains where some previous information
(about reachability for instance) is available, the ini-
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Figure 3: Car on the hill

tial value of d can be designed to incorporate such
domain-specific, prior knowledge. Namely, in large
domains, random or ε-greedy initial walks can help
initialize d to non-zero values only in reachable re-
gions of the X×U space.

The complexity of an iteration of the above
OSS(N) instance can be analyzed as follows. The
sampling phase is O(NNT S) and, since we train NT S
policies on sets of N samples with tree-based FQI5,
the policy training part is O(NT SN log(N)). Finally,
the density update phase is O(NT SN). So the over-
all time complexity of this OSS(N) algorithm is
O(NT SN log(N)).

5 EXPERIMENTS

5.1 Experimental protocol

The “car on the hill” domain. In order to illustrate
how the previous section’s OSS(N) method performs
in practice, and to visualize graphically the sample
set’s evolution in a two-dimensional state space, we
report optimization results on the “car on the hill” do-
main. In this domain, an under-powered car tries to
reach the top of a hill, in order to escape from a val-
ley as illustrated on Figure 3. A positive reward is
gained when the car exits from the right hand side of
the domain. If the car goes too fast or exits from the
left-hand side, it receives a negative feedback. Other-
wise, zero rewards are obtained.

The action space is composed of the two “±4N”
forces: U = {−4,4}. The discrete-time dynamics are
obtained from the integration of the car’s law of mo-
tion, over time intervals of 0.1s. We chose to use a
γ factor of 0.95 as in (Ernst et al., 2005). With p the
horizontal position of the car, H(p) the hill’s equa-
tion, and g the gravitational constant, the continuous

5Which has time complexity of O(N log(N)).



time dynamics of the system are:

H(p) =

{
p2 + p if p < 0

p√
1+5p2

if p≥ 0

p̈ =
u−gH ′(p)− ṗ2H ′(p)H ′′(p)

1+H ′(p)2

The state space of the system is spanned by the
two variables (p, ṗ) and is bounded: X = [−1;1]×
[−3;3]∪{x∞}. The additional state x∞ is an abstract
absorbing state, entered only when the car’s dynamics
let it escape the domain’s bounds (either in speed or
position). The only non-zero rewards received in this
domain are for the transition to x∞:

r(xt ,ut) =

 1 if pt+1 > 1 and |ṗt+1| ≤ 3
−1 if pt+1 <−1 or |ṗt+1|> 3

0 otherwise

Initializing d. We initialized the distribution d by
using a regular paving with N Gaussian elements in
the state space and by drawing all actions at random
(Bernoulli distribution with a 0.5 threshold), as illus-
trated in Figure 5(a), in order to promote sample di-
versity. Note however that many other choices for the
initial d were possible, even the blind initialization of
all Gaussian distributions to the same value.

Choosing N, NT S and ρCE . Recall that the first
purpose of OSS is to use batch-mode RL algorithms
in order to tackle large state-action spaces. We il-
lustrate its properties on small domains, in order to
show one can obtain optimal policies with small sam-
ple sets, but the real use of OSS(N) for RL practi-
tioners lies in the case where the state-action space
is too large to be uniformly partitioned and where N
is strongly constrained by the available computational
resources. In order to illustrate the ability of OSS to
find efficient policies with few samples, we report ex-
perimental results with N = 20. Note that similar re-
sults were obtained with even lower values of N. We
chose a value of 500 for NT S with a ρCE of 0.1.

Parameters of tree-based FQI. Tree-based FQI
presents the advantage of requiring only few param-
eters to tune. In our case, each Q-function is rep-
resented with a mixture of 200 fully-developed ex-
tremely randomized trees and 30 iterations of FQI are
performed to obtain an estimate of the Q∗ function.

Scoring function. We chose to evaluate a policy’s
quality by using a set of initial states corresponding
to different initial values of p and to a null initial ve-
locity. The policy’s score is the average of the ini-
tial states’ values, estimated by performing rollouts.
These initial states are seven regularly dispatched po-
sitions on the hill, with zero velocity (the small bullets
on the horizontal axis of Figures 5(a) to 5(i)).
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Figure 4: Evolution of the scores throughout the iterations

5.2 Results

Figure 4 reports the evolution of the policy scores
throughout the algorithm’s iterations. The lowest
curve represents the evolution of the worse sample
set’s (among the set T ) value Mmin. The middle one is
the evolution of MCE and the top one corresponds to
the value Mmax of the best sample set of T . The most
significant result of this figure is the steady evolution
of the (1− ρCE)-quantile MCE since both Mmin and
Mmax can be due to lucky outliers. As expected, all
three scores increase with the number of iterations,
with a larger variance for Mmax and Mmin. One can
note the steady increase of MCE towards the optimal
value for this domain (0.49).

An interesting property can be noted if one allows
for a slight modification of Algorithm 2. If, instead
of returning policy inference(sample(θ)) in the end,
one stores offline the best policy obtained at each it-
eration, then, because Mmax’s high variance allows it
to reach some optimal values very early in the iter-
ations, a close-to-optimal policy can be found much
before MCE converges to the optimal score. This adds
very little overhead to the algorithm since it only re-
quires one disk writing operation per iteration and can



be beneficial in an anytime setting: the best policy
is stored on disk and always available for retrieval
if needed, and the probability of finding even better
policies increases with the iterations (until asymptotic
convergence of MCE ).

Figure 5 reports the graphical evolution of the
Gaussian densities of d, describing where the crucial
samples concentrate in the state space. The triangles
in these figures represent the samples the distributions
are computed from. Hence, in a single figure, there
are ρCE ·NT S ·N = 0.1 · 500 · 20 = 1000 samples. A
triangle oriented to the left (resp. right) stands for
a −4 (resp. +4) action. Since we chose the naive
model of uncorrelated variables, all the ellipses repre-
sented have their principal directions along the state
space’s axes. A richer covariance model might allow
for a better sample set description at the cost of a more
complex distribution parameter update phase.

The main conclusion one can draw from these re-
sults is that, by comparing the influence of different
sample sets on the optimal policy computed by FQI,
and by using a probability density-based optimiza-
tion method, we were able to identify a distribution
on the sampling scheme (Figure 5(i)) which induces
very good policies with as little as 20 samples. In
contrast, the original paper on tree-based FQI (Ernst
et al., 2005) suggests that, in average, it is necessary
to collect tens of thousands of samples via random
walk in the state space, before an optimal policy can
be found. The generalization of this experimental re-
sult indicates that instead of an ever-refining process
for the sample set, batch-mode RL algorithms can
take advantage of sample set optimization, through
OSS(N) algorithms, in order to reach optimal policies
with a low number of samples.

6 DISCUSSION

6.1 Time and space efficiency

When the state-action space’s dimension becomes
large, processing times for batch-mode RL algorithms
increase dramatically, since the sample complexity
of these algorithms is often worse than linear (e.g.,
O(Nlog(N)) for tree-based FQI). At a certain point,
it might become preferable to run NT S sample col-
lections and policy optimizations for small policies
based on sample sets of size N, than one large compu-
tation on the very large equivalent sample set of size
NT S ·N (if this computation is at all possible). More
formally, this is supported by the complexity estimate
of Section 4, which illustrates an O(NT SN log(N))
time per OSS iteration which can be advantageously

compared to the O(NT SN log(NT SN)) time complex-
ity of applying tree-based FQI to the huge set of NT SN
samples (recall NT S is the large value here, N being
fixed to a small value by the user).

On the space complexity side, both approaches re-
quire O(NT SN) space to store the trees and the sample
sets. However, OSS can benefit easily from possible
disk storage since all the sample sets are used inde-
pendently and at different times. If one allows disk
storage, then the space complexity of OSS boils down
to O(N) since an iteration of OSS(N) only requires
keeping and processing one set of size N at once.

Furthermore, it is interesting to point out that com-
puting the score of a given θ is fully independent of
any other score computation. Hence OSS methods
can be easily adapted to a setting of distributed com-
putation on several small computers and can thus take
advantage of parallel architectures, distributing the
computational burden into small light-weight tasks.

6.2 Stochastic RL algorithms

One of the possible caveat of using a forest of ex-
tremely randomized trees for the regressor in FQI is
related to the possible variance in the results and the
associated variance in policy quality. So far, all RL al-
gorithms are implicitly supposed to be deterministic,
ie. given a fixed sample set as input, they always out-
put the same result. This is not true for extremely ran-
domized trees. Their use in the general case of FQI is
still relevant because the variance in the results tends
to zero when the number of samples grows. But in
our case, since we voluntarily kept the samples num-
ber very low, we witnessed a very large variance in the
policies generated from a given set of 20 samples. To
avoid such a variance, a simple option is to increase
the number of trees in the forest, since the variance
also tends to zero with a large number of trees. Al-
though the 200 trees used per Q-function in the previ-
ous experiment were already a large forest compared
to the one reported in (Ernst et al., 2005) (which only
had 50 trees), we tried to run the OSS meta-algorithm
on FQI with even larger numbers of trees (up to 1000)
and observed the same behaviour as reported in Sec-
tion 5.2. Obviously, when using a non-deterministic
algorithm such as tree-based FQI, one cannot guar-
antee anymore that OSS will converge to a sample set
providing the optimal policy every time, but instead, it
will lead to a training set θ∗ that provides the optimal
policy with high probability. For the case where the
variance in the results tends to zero (with a very large
number of trees or with a deterministic algorithm such
as LSPI), then this probability should tend to one.

It is also interesting to note that variance in the al-
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Figure 5: Evolution of the distribution density with the iterations



gorithm’s output policies might actually be desirable,
since it extends the set of policies which are “reach-
able” from an N-sized sample set. Then, by allowing
the storage of the best found policies along the way,
good policies can be found early in the search process
(as Figure 4 illustrates).

These experiments highlighted an interesting (un-
expected) property of variance reduction for OSS(20).
During the first iterations, if several policies are
trained from a given sample set, we observe a large
variance in the output6. However, as the iteration
number grows and the distribution d concentrates on
crucial samples, we observe both an increase in the
expected value of M(θ) and a strong reduction in the
output policy’s variance: at iteration 40, when one
trains several policies using a single sample set drawn
from d, those policies both perform much better and
are much closer to each other than the ones of itera-
tion 1 were.

6.3 Dealing with stochastic problems

Algorithm 2 can be applied to stochastic problems
without any change. However, the results need to be
interpreted slightly differently. In stochastic domains,
the equivalence between (x,u) and (x,u,r,x′) does not
hold anymore and, thus, one needs to emphasize the
difference between the sets θ and D. As stated in Sec-
tion 3, θ defines a sample collection scheme. Then,
finding the optimal θ consists in finding the sample
collection scheme that will lead to the best expected
policy, with respect to the transition model’s distribu-
tions.

Indeed, in Section 3, we did not focus explicitly
on the sample collection phase since a single θ al-
ways induced the same D set in the deterministic set-
ting. But, in the stochastic case, one cannot make use
of such a shortcut and one should note that we do not
compute µ∗

θ
anymore, but an optimal policy µ̂∗

θ
for one

possible training set D, drawn according to θ, among
many others. This clarification raises the question of
sampling several D from θ to assess the true value of
M(θ). But, as for the variance reduction property of
the previous section, we argue one does not need to do
so and, instead, can rely on the large number of θ val-
ues drawn from d to average out the different possible
D sets. This question remains open nevertheless and
should be addressed in more detail in future research.

6The statistical relevance of the S′ set is still insured be-
cause the large number NT S of sample sets averages out this
variance for the update of d.

6.4 Related work

In order to collect relevant sample sets for batch-mode
RL algorithms, the naive approach of uniform grid
sampling across the state-action space does not scale
to high-dimensional domains since the RL algorithms
become very slow (if able at all) at processing this ex-
ponentially increasing amount of data. We mentioned
earlier the domain-specific approaches of (Neumann
and Peters, 2009; Riedmiller, 2005; Ernst et al., 2006;
Kalyanakrishnan and Stone, 2007). In the latter, the
authors alternate a policy computation and a sample
gathering phase, where the sample gathering is a care-
fully tuned ε-greedy exploration, with respect to the
last computed policy, regularly reset to the start state.
All the discovered samples are then added to the sam-
ple set and the optimal policy is recomputed. Such
data collection schemes rely on Monte-Carlo explo-
ration methods and present similarities with online-
RL approaches, which provide reachability guaran-
tees while incrementally extending the sample set.
In general, these methods suffer from two defaults,
which come in contrast with the OSS approach:
• They often require a lot of domain specific hand-

tuning to be efficient.
• They keep on enriching the sample set, letting it

grow up to a point where its size becomes again
problematic for the batch-mode RL method.

The work of (Ernst, 2005) presents a method to select
concise sets of samples for the same tree-based FQI
algorithm than the present work. But their goal and
approach was very different: instead of searching for
the best possible fixed-size set of samples, they started
with a very large constrained sample set and tried to
extract a subset that would still provide policies with
good performances, without requiring any extra sam-
pling from a generative model. They based their ap-
proach on a Bellman error criterion and illustrated a
pathological case where the subset found critically
concentrates samples around Q-function discontinu-
ities. It is also interesting to note that the reported
original motivation of their paper confirms ours: their
goal being to “lighten the computational burden of
running the fitted Q-iteration algorithm on the whole
set of four-tuples”.

Finally, Cross Entropy methods, such as the one
used in our experiment, have been quite widely used
in recent years in the RL literature, for instance for
the task of refining policies for Tetris (Szita and
Lörincz, 2006), or for adapting feature functions for
linear architectures (Menache et al., 2005), or to opti-
mize fuzzy state space partitions for fuzzy Q-iteration
(Buşoniu et al., 2008). An interesting parallel can be
made between the latter approach and the present one:



they define fuzzy partitions for the value function, im-
plicitly identifying specific areas in the X ×U space,
similar to the areas of interest defined for samples by
our density-based optimization method. Although CE
search is not an imperative choice for OSS (other op-
timization methods are available), it seems to be well
suited to handle the large dimensional, gradient-less
optimization problems that arise in RL.

7 CONCLUSION

We introduced the Optimal Sample Selection
meta-algorithm, in order to generate optimal policies
for large sequential control problems. This approach
consists in looking directly for a set of training ex-
amples that — given a batch-mode RL algorithm —
will induce an optimal policy for the domain at hand.
More specifically, an OSS(N) algorithm takes as in-
put a generative model, a batch-mode RL algorithm,
an evaluation procedure, then defines the search for
an optimal set of N training examples as an optimiza-
tion problem, and finally solves it using a stochastic
optimization method. The instance of OSS we tested
uses tree-based fitted Q-iteration as the batch-mode
RL algorithm, evaluates a policy by generating trajec-
tories to compute its average return over a set of ini-
tial states and optimizes the sample set by using Cross
Entropy search. We studied this instance’s properties
under various simulation conditions. One remarkable
property of OSS(N) is that a very small set of 20 care-
fully chosen samples was sufficient to generate a near-
optimal policy.

Based on these results and on other experiments
not reported in this paper, we conjecture that for
many Optimal Control problems, there exist sam-
ple sets of “acceptable size” which can lead to near-
optimal policies when used as input of batch-mode
RL algorithms and that finding these sets is compu-
tationally feasible. This leads us to believe that this
OSS meta-algorithm may perform well, where other
sampling/discretization-based resolution schemes in
Optimal Control fail, due to limitations in the size of
the sample sets that can be manipulated in a reason-
able time by a computer.

ACKNOWLEDGEMENTS

Emmanuel Rachelson acknowledges the support
of the Belgian Network DYSCO, IAP Programme.
François Schnitzler is supported by FRIA. Damien
Ernst is a research associate of the FRS-FNRS. The
scientific responsibility rests with the authors.

REFERENCES

Bertsekas, D. P. and Shreve, S. E. (1996). Stochastic Opti-
mal Control: The Discrete-Time Case. Athena Scientific.

Boyan, J. (1999). Least-squares temporal difference learn-
ing. In Int. Conf. Machine Learning, pages 49–56.
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