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Abstract

We focus on the problem of decentralized planning and coor-
dination for two heterogeneous autonomous agents, having a
common mission in an uncertain environment. For example,
we consider a helicopter UAV and a ground rover cooperat-
ing in the exploration of a dangerous zone where communi-
cation is limited, which forces decentralization of planning.
After proposing a framework for decentralized planning, we
underline the need for a planner under uncertainty taking con-
tinuous time into account in time-dependent problems and
present initial results on temporal planning under uncertainty.

Decentralized coordination of independent
policies

Imagine a situation where a helicopter UAV and a rover co-
operate in the search for a specific target in an unknown op-
eration zone. Available individual actions deal with move-
ment, observation and interaction with the environment,
but these actions’ efficiency can be greatly improved when
agents cooperate and coordinate their strategies. For com-
munication reasons, both agents plan separately. Since their
environment is unknown and uncertain, we assume they
have a Markov Decision Process (Puterman 1994) represen-
tation of their world. However, since planning is a decen-
tralized task, no agent has authority on the other to impose
a global plan. This problem can thus be seen as a decen-
tralized planning process for Dec-MDPs (Bernstein, Zilber-
stein, & Immerman 2000). In order to build an efficient
overall plan, the agents need to coordinate their strategies
by communicating to each other some relevant information
about how their current strategy affects the environment.

Therefore, following the general idea of (Chades, Scher-
rer, & Charpillet 2002), we imagined the communication
and coordination protocol summarized in figure 1. This
framework for coordination uses individual planning among
agents. Initially, a set of common variables is defined be-
tween the two agents. These variables describe the prob-
lem’s aspects that are common to both agents and will serve
as communication variables. The agents generate their own
initial policy with the initial knowledge they have of the
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problem. Then, using the communication variables, they
send to each other a message describing the effect of their
own strategy upon the common variables. This message de-
scribes the probabilistic timed evolution of the communica-
tion variables under an agent’s actions. At that point, both
agents integrate the message information into their model of
the world and correct their plan accordingly. Then the pro-
cess starts over in order to refine the obtained plans. This
method doesn’t guarantee to find the optimal global policy
for the pair of agents but (Chades, Scherrer, & Charpillet
2002) proved it was a good heuristic in the search for an ac-
ceptable coordinated strategy.

One can notice that in the framework we present, two global
strategies are actually initiated and improved through ex-
changes of information. These two strategies can be eval-
uated through the agents’ individual value functions and
therefore can be compared at each step. Consequently, this
method can be stopped at any time during the information
exchanges: the best valued policy is then chosen and ap-
plied. These information exchanges can be seen as “inten-
tion assessments” and therefore as a purely cooperative pro-
tocol for agents coordination. Refinements for communi-
cation stopping, common actions (actions that require the
existence of the pair of agents as a third virtual agent) co-
ordination and policy update can be set up on top of the
existing protocol and will not be discussed here. If used
during a pre-mission phase, the framework presented above
is an offline coordination scheme where individual replan-
ning is triggered by a new intention declared by the other
agent. Whereas during mission execution, observations and
plan changes can trigger online replanning. This behaviour
is illustrated by the bottom part of figure 1.

In the above paragraphs, we assumed each agent had an in-
dividual planning algorithm able to deal with problems pre-
senting two important aspects: uncertainty about the action’s
outcomes and time-dependency of the problem’s data. For
example, a specific place can be very dangerous for the rover
to explore and therefore be associated with a very weak sur-
vival probability, but while the helicopter patrols over the
zone, the survival probability becomes acceptable to under-
take an exploration. Therefore, the planner needs to take into
account the fact that exploring the zone is a probabilistic ac-
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Figure 1: Decentralized coordination and cooperation

tion and that its characteristics are time-dependent (herethe
time-dependency comes from the intentions declared by the
other agent). Similarly, the rewards obtainable can be time
dependent (for example if a reward changes continuously
with time). These two crucial aspects were already pointed
out by (Bresinaet al. 2002). We investigate temporal plan-
ning under uncertainty in the next section and propose two
methods for approximating good policies.

Temporal planning under uncertainty
Since the problematic of time dependent problems of plan-
ning under uncertainty reaches beyond the scope of policy
coordination, we investigated general models for temporal
planning under uncertainty. For example, planning to take a
picture at a certain time with an Earth observation satellite
has a certain probability of success according to the cloud
cover beneath it. Markov decision processes (MDPs) are
usually used to deal with uncertainty in the result of actions
(Puterman 1994). An MDP can be represented as a count-
able set of statesS, a set of actionsA, a transition func-
tion P (s′|s, a) giving the probability of arriving in states′

when we undertake actiona in states, and a reward model
r(s, a) representing the reward associated with the transition
(s, a). Solutions to MDPs, are often given as policies map-
ping states to actions, these policies being optimized accord-
ing to a certain criterion. MDP policies can be optimized
using linear or dynamic programming (Bellman 1957) algo-
rithms such as value or policy iteration.

Unfortunately, MDPs represent stationary problems or dis-
crete change problems. For the example of our satellite (or
the case of our policies coordination), the evolution of the
clouds is a continuous function of time, so is the probability
of success of our photography. We aim at defining and ap-
proximating optimal policies for MDP problems that present
a continuous-time evolution. In the agent coordination ex-
ample, if one agent is able to plan in a dynamic, continu-
ously changing environment, then it can integrate the other
agent’s plan effects as an evolution of its own model in order
to coordinate their actions.

Temporal planning is a topic that has been widely covered
in deterministic planning (with the IxTeT planner for ex-
ample (Ghallab & Laruelle 1994)) and in models that in-
cluded some uncertainty about action durations (Wellman,
Ford, & Larson 1995). Most models that deal with tempo-
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Figure 2: TMDP

ral planning under uncertainty in the MDP framework ex-
plore the possibilities of different and uncertain action dura-
tions and asynchronous actions (Younes & Simmons 2004;
Mausam & Weld 2005), or deal with continuous state spaces
without emphasis on the time variable (Hauskrecht & Kve-
ton 2006). There are two main models in the literature that
take a continuous-time evolution into account in an MDP
framework. The semi-Markov decision processes (SMDP)
model describes transitions with a functionQ(s′, t′|s, a) =
P (s′|s, a) · F (t′|s, a) indicating the probability to end up in
states′ after a durationt′ if we undertakea in s. SMDPs
are useful to take duration costs into account but are limited
by some strong hypothesis of stationarity, independence of
t′ ands′ and the absence of exogenous events. (Boyan &
Littman 2001) introduced the TMDP model in order to deal
with this kind of problems.

The TMDP model deals with time dependent decision prob-
lem with uncertainty on the action’s outcomes. A TMDP
transition is described by a set of outcomesµ and an out-
come realization likelihood functionL(µ|s, a, t). When we
undertake actiona in states at time t we have a proba-
bility L(µ|s, a, t) of realizing outcomeµ; an outcome be-
ing a triplet (s′µ, Tµ, Pµ) where s′µ is the arrival state of
the outcome andPµ is the probability density function de-
scribing the duration (ifTµ = REL) or the ending date
(if Tµ = ABS) of the outcome. This model is illustrated
on figure 2. Formally, a TMDP is described as a discrete
state spaceS, a discrete action spaceA, a setM of out-
comesµ = (s′µ, Tµ, Pµ), an outcome likelihood function
L(µ|s, a, t) giving the probability of realizing outcomeµ
when undertaking actiona at t in states, a reward function
R(µ, t, t′) (t andt′ being the beginning and ending dates of
the outcome) and a “dawdling” costK(s, t) representing the
instantaneous cost att of a virtual “wait” action ins.

Initial results for approximate temporal
planning under uncertainty

We have proposed two different algorithms for approxi-
mating good policies for TMDP-like problems. Classical
TMDPs can be solved exactly ifPµ are discrete probability
distributions,L are piecewise constant andR is decompos-
able into piecewise linear additive functions. The first al-
gorithm extends the classical TMDP representation to more
general classes of functions (namely piecewise polynomial
functions and probability density functions). The second
algorithm, named SMDP+, is based on the search for the
smallest set of dates necessary to build an efficient time-
dependent policy. These two methods lead to a generaliza-
tion of temporal planning under uncertainty to a model of
parametric action MDPs, named XMDP, which is detailed
in (Rachelson, Teichteil, & Garcia 2007).



The optimality equations for TMDPs as given in (Boyan &
Littman 2001) are:

V (s, t)= sup
t′≥t

(

∫ t′

t

K(s, θ)dθ + V (s, t′)

)

(1)

V (s, t)=max
a∈A

Q(s, t, a) (2)

Q(s, t, a)=
∑

µ∈M

L(µ|s, t, a) · U(µ, t) (3)

U(µ, t)=

{
∫∞

−∞
Pµ(t′)[R(µ, t, t′) + V (s′µ, t′)]dt′ (∗)

∫∞

−∞
Pµ(t′ − t)[R(µ, t, t′) + V (s′µ, t′)]dt′ (†)

(4)

(∗) if Tµ = ABS (†) if Tµ = REL

We proved that if allPµ, L, R andK functions were piece-
wise polynomial thenV was piecewise polynomial and, with
an approximation scheme used to reduceV ’s degree to keep
it stable through the value iterations of equations 1 to 4, we
could approximate the optimal value function with piece-
wise polynomial function. This first approach is currently
being implemented and tested.

The second approach is based on the idea that, in a given
states, the optimal time-dependent policy can be repre-
sented as a finite (and supposedly small) set of “time inter-
val, action” pairs. Thus, finding the best policy turns out to
be the task of finding the best partitioning of the time axis
and the best action to undertake on each time interval. The
SMDP+ algorithm we developed uses thet-Bellman error
as a heuristic to find the best partitioning dates. Details are
provided in (Rachelsonet al. 2006) and the algorithm is il-
lustrated on figure 3. The SMDP+ algorithm follows four
main steps. First, it discretizes the continuous problem writ-
ten as a TMDP or a generalized SMDP, using the initial par-
titioning of the time axis (this partitioning may be trivialfor
initialization) adding a state variable corresponding to the
current time interval. Then it finds an optimal policyπ̃ for
this discretized MDPM̃ . It defines a policyπ on the contin-
uous time variable by identification tõπ and calculates the
t-Bellman error of this policyπ. Thet-Bellman error is, per
state, the function of time giving the measure of how much
we can improve the current value function by performing a
single Bellman backup. We find thet that maximizes this
error and use it as a heuristic to repartition the time axis. We
adapt the discretization and iterate back to the first step. As
the cache of decision dates grows, we insert a simplification
step between step 2 and 3 in order to merge any consecutive
intervals where the action specified byπ̃ is the same. This
way, we maintain, per state, a minimal cache of decision
dates.

This SMDP+ algorithm is quite close to policy iteration ap-
proaches, future research will involve investigating the link
between them. The SMDP+ algorithm is the next step in our
implementation and testing process. Since we deal with state
variables and factored representations we wish to exploit the
properties of factored MDPs and the techniques of Approx-
imate Linear Programming for evaluation of the value func-
tions in the algorithm.
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discrete policy
π̃(s̃)

if t ∈ T̃
π(s, t) = π̃(s, T̃ )

Bellman error
t̃s = argmax

t∈R

BEπ
s (t)

up
da

tin
gM̃

optimization

T̃
→

t

BEπ(s, t)

Figure 3: The SMDP+ algorithm

Future research will deal with improving the current tech-
niques for temporal probabilistic planning, comparing them
to existing results, and finally integrating them into the
global coordination framework we defined initially.
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