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UAV patrol mission
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Modeling background

Sequential decision under probabilistic uncertainty:

Markov Decision Process

Tuple 〈S,A,p, r ,T 〉
Markovian transition model p(s′|s,a)
Reward model r(s,a)
T is a set of timed decision epochs {0,1, . . . ,H}

Infinite (unbounded) horizon: H→ ∞

t0 1 n n + 1

s0

}
p(s1|s0, a0)
r(s0, a0)}

p(s1|s0, a2)
r(s0, a2)

sn p(sn+1|sn, an)
r(sn, an)
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Optimal policies for MDPs

Value of a sequence of actions

∀(an) ∈ AN,V (an)(s) = E

(
∞

∑
δ=0

γδ r(sδ ,aδ )

)

Stationary, deterministic, Markovian policy

D =

{
π :

{
S → A
s 7→ π(s) = a

}

Optimality equation

V ∗(s) = max
π∈D

V π(s) = max
a∈A

{
r(s,a)+ γ ∑

s′∈S
p(s′|s,a)V ∗(s′)

}
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What are we looking for?

One way of considering the UAV patrol problem
consists in saying that we search for

policies and value functions which depend on time.

t

in s1: a3 a7 a1

in s2: a2 a6 a1

in s3: a3 a2

a3
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Time-dependent MDPs

Definition (TiMDP, [Boyan and Littman, 2001])

Tuple 〈S,A,M,L,R,K 〉
M Set of outcomes µ =

(
s′µ ,Tµ ,Pµ

)
L(µ|s, t,a) Probability of triggering outcome µ

R(µ, t, t ′) = rµ,t(t)+ rµ,τ(t ′− t)+ rµ,t ′(t ′)

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

Boyan, J. A. and Littman, M. L. (2001).
Exact Solutions to Time Dependent MDPs.
Advances in Neural Information Processing Systems, 13:1026–1032.
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TiMDP dynamic programming equation

V (s, t) = sup
t ′≥t

(∫ t ′

t
K (s,θ)dθ +V (s, t ′)

)
V (s, t) = max

a∈A
Q(s, t,a)

Q(s, t,a) = ∑
µ∈M

L(µ|s, t,a) ·U(µ, t)

U(µ, t) =

{ ∫
∞

−∞
Pµ(t ′)[R(µ, t, t ′)+V (s′µ , t ′)]dt ′ if Tµ = ABS∫

∞

−∞
Pµ(t ′− t)[R(µ, t, t ′)+V (s′µ , t ′)]dt ′ if Tµ = REL

Qn(s, t, a1)

Qn(s, t, a2)

Qn(s, t, a3)

Qn

t
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Optimality equation?

Is this DP equation an optimality equation for TiMDPs?
If yes, corresponding to which criterion?

Rachelson, E., Garcia, F., and Fabiani, P. (2008).
Extending the Bellman Equation for MDP to Continuous Actions and
Continuous Time in the Discounted Case.
In International Symposium on Artificial Intelligence and Mathematics.

Yes,
with as total reward criterion

and specific hypotheses on the transition and reward models.
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Value Iteration for TiMDPs

Solving TiMDPs↔ solving the optimality equation.
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Solving TiMDPs

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

Value iteration Bellman backups for TiMDPs can be performed exactly if:

L(µ|s, t,a) piecewise constant

R(µ, t, t ′) = rµ,t(t)+ rµ,τ(t ′− t)+ rµ,t ′(t
′)

rµ,t(t), rµ,τ(τ), rµ,t ′(t
′) piecewise linear

Pµ(t ′), Pµ(t ′− t) discrete distributions

Then V ∗(s, t) is piecewise linear.
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Solving TiMDPs

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

What about other, more expressive functions?

How does this theoretical result scale to practical resolution?
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Extending exact resolution
Piecewise polynomial (PWP) models: L, Pµ , ri ∈Pn.

Degree evolution

Pµ ∈DPA

ri ,V0 ∈PB

L ∈PC

⇒ d◦(Vn) = B +n(A+C +1)

Stability⇔ A+C =−1.

Exact resolution conditions

Degree stability + exact analytical computations:


Pµ ∈DP−1

ri ∈P4

L ∈P0
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ri ,V0 ∈PB

L ∈PC

⇒ d◦(Vn) = B +n(A+C +1)

Stability⇔ A+C =−1.

Exact resolution conditions

Degree stability + exact analytical computations:


Pµ ∈DP−1

ri ∈P4

L ∈P0

If B > 4: approximate root finding.
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Extending exact resolution
Piecewise polynomial (PWP) models: L, Pµ , ri ∈Pn.

Degree evolution

Pµ ∈DPA

ri ,V0 ∈PB

L ∈PC

⇒ d◦(Vn) = B +n(A+C +1)

Stability⇔ A+C =−1.

Exact resolution conditions

Degree stability + exact analytical computations:


Pµ ∈DP−1

ri ∈P4

L ∈P0

If A+C > 0: projection scheme of Vn on PB.
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And in practice?

Experimental result

The number of definition intervals in Vn grows with n and does not
necessarily converge.

⇒ numerical problems occur before ‖Vn−Vn−1‖< ε .

e.g. V calculation:

Qn(s, t, a1)

Qn(s, t, a2)

Qn(s, t, a3)

Qn

t
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And in practice?

Experimental result

The number of definition intervals in Vn grows with n and does not
necessarily converge.

⇒ numerical problems occur before ‖Vn−Vn−1‖< ε .

→ general case: approximate resolution by piecewise polynomial
interval simplification for the value function.

Approximation
↗ degree reduction

↘ interval simplification
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TiMDPpoly : Approximate Value Iteration on TiMDPs

TiMDPpoly polynomial approximation

pout = poly_approx(pin, [l,u],ε,B)
Two phases: incremental refinement and simplification.

I

I1 I2

m
ax

er
ro

r
>

ǫ

pin

first attempt
second attempt

14 / 24
Solving Time-dependent Markov Decision Processes



Time-dependent MDPs Value iteration in practice: TiMDPpoly Experiments Conclusion

TiMDPpoly : Approximate Value Iteration on TiMDPs

TiMDPpoly polynomial approximation

pout = poly_approx(pin, [l,u],ε,B)
Two phases: incremental refinement and simplification.

I

I1 I2 I3

pin

pout
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TiMDPpoly : Approximate Value Iteration on TiMDPs

TiMDPpoly polynomial approximation

pout = poly_approx(pin, [l,u],ε,B)
Two phases: incremental refinement and simplification.

Properties

pout ∈PB

‖pin−pout‖∞ ≤ ε

suboptimal number of intervals

good complexity compromise
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TiMDPpoly : Approximate Value Iteration on TiMDPs

Prioritized Sweeping.

Leveraging the computational effort by
ordering Bellman backups

Perform Bellman backups in states with the
largest value function change.

Moore, A. W. and Atkeson, C. G. (1993).
Prioritized Sweeping: Reinforcement Learning with Less Data and Less
Real Time.
Machine Learning Journal, 13(1):103–105.
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TiMDPpoly : Approximate Value Iteration on TiMDPs

Adapting Prioritized Sweeping to TiMDPs.

Pick highest priority state
→ s0

s0
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TiMDPpoly : Approximate Value Iteration on TiMDPs

Adapting Prioritized Sweeping to TiMDPs.

Pick highest priority state
→ s0

Bellman backup
→ V (s0, t)s0

update V (s0, t)
update V (s0, t)
poly approx (V (s0, t))
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TiMDPpoly : Approximate Value Iteration on TiMDPs

Adapting Prioritized Sweeping to TiMDPs.

Pick highest priority state
→ s0

Bellman backup
→ V (s0, t)
Update Q values
→ Q(s, t, a)

s0

s1

s2

s3

a10, µ10

a20, µ20

a30, µ30
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TiMDPpoly : Approximate Value Iteration on TiMDPs

Adapting Prioritized Sweeping to TiMDPs.

Pick highest priority state
→ s0

Bellman backup
→ V (s0, t)
Update Q values
→ Q(s, t, a)
Update priorities
→ prio(s) = ‖Q−Qold‖∞

s0

s1

s2

s3

prio(s1)

prio(s2)

prio(s3)
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TiMDPpoly

TiMDPpoly in a nutshell

TiMDPpoly :


Analytical polynomial calculations
L∞-bounded error projection
Prioritized Sweeping for TiMDPs

Analytical operations: option for representing continuous quantities.

Approximation makes resolution possible.

Asynchronous VI makes it faster.
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The UAV patrol problem
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The UAV patrol problem
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The UAV patrol problem
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A Mars rover problem
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Mars rover policy

V and π in p = 3 when no goals have been completed yet.
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Mars rover policy

π in p = 3 when no goals have been completed yet — 2D view.
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Related work and differences

Representation issues and formal resolution

[Feng et al., 2004] extends the [Boyan and Littman, 2001] idea to
continuous state spaces with discrete transition models and uses
kd-trees for storing partitions.

[Li and Littman, 2005] extends to continuous state space MDPs and
PW constant functions illustrating the need for simplification.

TiMDPpoly extends to PWP representations in the one-dimensional case
with direct generalization to continuous state spaces.

TiMDPpoly keeps the specific wait action of TiMDPs.
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Related work and differences

Dynamic Programming

[Boyan and Littman, 2001, Feng et al., 2004, Li and Littman, 2005]
→ finite horizon optimization

Optimality equation analysis:

TiMDPpoly → infinite horizon, asynchronous optimization.
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Conclusion

We exploit previous results about observable time in MDPs
[Rachelson et al., 2008] to provide better understanding of TiMDPs

TiMDPpoly : an improved VI algorithm for solving TiMDPs with

Analytical Bellman backups
L∞-bounded value function approximation
Asynchronous dynamic programming
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Perspectives

Generalization to continuous state space MDPs
Rectangular partitions? Kuhn triangulations?

Spline theory tools.

Continuous action parameter optimization.

Prioritizing prio(s)→ prio(s, I).
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Thank you for your attention!
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