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Background

Sequential decision making

Find the best sequence of L/R actions
or the best control policy

to reach the summit.
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Background
Sequential decision making in Markov Decision Processes.

Markov Decision Process

Tuple 〈S,A,p, r ,T 〉
Markovian transition model p(s′|s,a)
Reward model r(s,a)
T is a set of timed decision epochs {0,1, . . . ,H}

Infinite (unbounded) horizon: H→ ∞

t0 1 n n + 1

s0

}
p(s1|s0, a0)
r(s0, a0)}

p(s1|s0, a2)
r(s0, a2)

sn p(sn+1|sn, an)
r(sn, an)

Goal: optimize a cumulative reward.
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How local is the knowledge gained from
experience?

Learning an improved policy

Intuition indicates that a “good” action in a given position remains
“good” around this position.
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Environment smoothness

Ability to generalize↔ regularity of the environment

But the environment’s model is unknown:

it is still possible to
make an hypothesis on
learn

its smoothness.
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Focus of this contribution

Formalize the notion of smoothness for the underlying model,

Derive properties for the optimal policy and value function,

Exploit these properties in an algorithm for RL problems.
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Characterizing the environment’s regularity?

Model smoothness↔ Lipschitz continuity

Lipschitz continuity

f : X → Y ,∀(x1,x2) ∈ X 2, dY
(
f (x1)− f (x2)

)≤ L ·dX (x1− x2)
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Characterizing the environment’s regularity?

Model smoothness↔ Lipschitz continuity

Transition model’s smoothness

The results of two “similar” actions, in two “similar” states, are “similar”.

LC on probability distributions.

Kantorovich distance:

K (p,q) = sup
f

{∣∣∣∣∫
X

fdp−
∫

X
fdq

∣∣∣∣ : ‖f‖L ≤ 1

}
Lp-LC transition model:

K
(
p(·|s,a),p(·|ŝ, â)

)≤ Lp
(‖s− ŝ‖+‖a− â‖)
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Characterizing the environment’s regularity?

Model smoothness↔ Lipschitz continuity

Reward model’s smoothness

The rewards of two “similar” transitions are “similar”.

Lr -LC reward model:∣∣r(s,a)− r(ŝ, â)
∣∣≤ Lr

(‖s− ŝ‖+‖a− â‖)
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Characterizing the environment’s regularity?

Model smoothness↔ Lipschitz continuity

Policy’s smoothness

LC on actions or action distributions. Lπ -LC policies:

dΠ

(
π(s)−π(ŝ)

)≤ Lπ‖s− ŝ‖
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Characterizing the environment’s regularity?

Model smoothness↔ Lipschitz continuity

Model smoothness hypothesis

(Lp,Lr )-LC MDP.

K
(
p(·|s,a),p(·|ŝ, â)

)≤ Lp
(‖s− ŝ‖+‖a− â‖)∣∣r(s,a)− r(ŝ, â)

∣∣≤ Lr
(‖s− ŝ‖+‖a− â‖)

Lπ -LC policies.

dΠ

(
π(s)−π(ŝ)

)≤ Lπ‖s− ŝ‖
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Intermediate results on LC of value functions

Lemma (Lipschitz continuity of the value function)

LQ-LC Q-function Q
Lπ -LC policy π

}
⇒[LQ(1+Lπ)]-LC value function V π w.r.t. Q

Lemma (Lipschitz continuity of the n-step Q-value)

(Lp,Lr )-LC MDP
Lπ -LC policy π

}
⇒
{

the n-step, finite horizon, γ-discounted
value function Qπ

n is LQn -LC, with:

LQn+1 = Lr + γ (1 + Lπ)LpLQn .
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LC of value functions

Theorem (Lipschitz-continuity of the Q-values)

(Lp,Lr )-LC MDP
Lπ -LC policy π

γLp (1 + Lπ) < 1

⇒
{

the infinite horizon, γ-discounted
value function Qπ is LQ-LC, with:

LQ =
Lr

1− γLp(1 + Lπ)
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Short discussion

Value of Lπ .
For most common discrete policies, almost everywhere in the state
space, one can prove the previous result with Lπ = 0.

γLp (1 + Lπ ) < 1?
With Lπ = 0, γLp < 1.
⇒ The environment’s spatial variations (Lp)

need to be compensated by
the discount on temporal variations (γ)
to obtain smoothness guarantees on the Q-function.

No guarantees 6⇒ no smoothness.
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Local validity of dominating actions

Definition (Sample)(
s,∆π(s),a∗(s)

)
with:

a∗(s) the one step lookahead dominating action in s

∆π (s) the domination gap

Theorem (Influence radius of a sample)

Given a policy π , with:
LQ-LC value function Qπ(
s,∆π(s),a∗(s)

) }
⇒ a∗(s) dominates in all s′ ∈ B

(
s,ρ(s)

)
ρ(s) =

∆π(s)

2LQ
.
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Exploiting influence radii

“Sampling”

Acquiring information concerning the dominating action in a given
state.

Two parallel processes:

Focus sampling on states providing high domination values (large ρ).

Removing chunks of the state space where local validity is guaranteed.
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LPI — The algorithm

Init: threshold εc , π0, n = 0, W = DRAW(m,d(),S)
while πn 6= πn−1 do

n← n + 1, c = 1, B = /0
while c > εc do(

s,a∗(s),∆πn−1 (s)
)←GETSAMPLE(πn−1,W )

B←B∪{(B(s,ρ(s)
)
,a∗(s)

)}
for all s′ ∈W ∩B

(
s,ρ(s)

)
, remove s′ and repopulate W

c = 1−VOLUME(B)/VOLUME(S)
πn = POLICY(πn−1,T )

GETSAMPLE(π,W )
loop

select state s in W with highest utility U(s)
for all a ∈ A, update Qπ (s,a),∆π (s),U(s), statistics
if there are sufficient statistics for s, return

(
s,a∗ (s) ,∆π (s)

)
15 / 20

On the Locality of Action Domination in Sequential Decision Making



General intuition Key results Localized Policy Iteration

Results on the inverted pendulum

ϑ

Goal: move left/right to balance the pendulum.
State space: (θ , θ̇)
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Successive policies

π0
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Successive policies

π1

17 / 20
On the Locality of Action Domination in Sequential Decision Making



General intuition Key results Localized Policy Iteration

Successive policies

π2
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Successive policies

π3
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Successive policies

π4
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Successive policies

π5
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Remarks

A balancing policy is found very early.

No a priori discretization of the state space, nor parameterization of the
value function.

Focus on the global shape of πn before refinement.

Reduced computational effort.
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Conclusion

Original question:
How local is the info gathered in one state about the dominating
action?

Formalize the notion of smoothness for the environment’s underlying
model:
Kantorovich distance, Lipschitz continuity→ MDP smoothness.

Other metrics? Other continuity criterion?
Other similarity measure?

Derive properties for the policies and value functions:
LC of the (optimal) value functions, influence radius of a sample.

Exploit these properties in an algorithm for RL problems:
Localized Policy Iteration combines UCB-like methods with influence
radii into an active learning method.

Deeper study of incremental/asynchronous PI methods.
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Thank you for your attention!
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