On the Locality of Action Domination in Sequential Decision Making

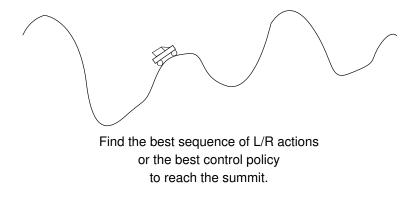
E. Rachelson M. G. Lagoudakis

Technical University of Crete

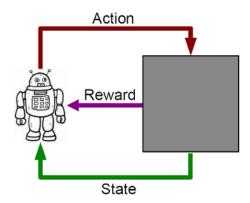
ISAIM, January 6th, 2010

Background

Sequential decision making



Background



On the Locality of Action Domination in Sequential Decision Making

Background

Sequential decision making in Markov Decision Processes.

Markov Decision Process

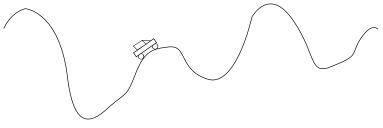
Tuple $\langle S, A, p, r, T \rangle$ Markovian transition model p(s'|s, a)Reward model r(s, a)*T* is a set of timed decision epochs $\{0, 1, \dots, H\}$

Infinite (unbounded) horizon: $H \rightarrow \infty$

Goal: optimize a cumulative reward.

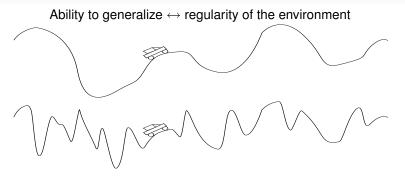
How local is the knowledge gained from experience?

Learning an improved policy



Intuition indicates that a "good" action in a given position remains "good" around this position.

Environment smoothness



But the environment's model is unknown:

it is still possible to make an hypothesis on learn its smoothness.

Focus of this contribution

- Formalize the notion of smoothness for the underlying model,
- Derive properties for the optimal policy and value function,
- Exploit these properties in an algorithm for RL problems.

Model smoothness \leftrightarrow Lipschitz continuity

Lipschitz continuity

 $f: X \rightarrow Y, \forall (x_1, x_2) \in X^2, \quad d_Y(f(x_1) - f(x_2)) \leq L \cdot d_X(x_1 - x_2)$

Model smoothness \leftrightarrow Lipschitz continuity

Transition model's smoothness

- The results of two "similar" actions, in two "similar" states, are "similar".
- LC on probability distributions.
- Kantorovich distance:

$$\mathcal{K}(p,q) = \sup_{f} \left\{ \left| \int_{X} f dp - \int_{X} f dq \right| : \|f\|_{L} \leq 1 \right\}$$

• *L_p*-LC transition model:

$$\mathcal{K}(p(\cdot|s,a),p(\cdot|\hat{s},\hat{a})) \leq L_p(\|s-\hat{s}\|+\|a-\hat{a}\|)$$

Model smoothness \leftrightarrow Lipschitz continuity

Reward model's smoothness

- The rewards of two "similar" transitions are "similar".
- L_r-LC reward model:

 $\left|r(s,a)-r(\hat{s},\hat{a})\right| \leq L_r\left(\|s-\hat{s}\|+\|a-\hat{a}\|\right)$

Model smoothness \leftrightarrow Lipschitz continuity

Policy's smoothness

LC on actions or action distributions. L_{π} -LC policies:

$$d_{\mathsf{\Pi}}ig(\pi(s) - \pi(\hat{s})ig) \leq L_{\pi}\|s - \hat{s}\|$$

Model smoothness \leftrightarrow Lipschitz continuity

Model smoothness hypothesis

• (L_p, L_r) -LC MDP.

$$\begin{split} & \mathcal{K}\big(p(\cdot|s,a),p(\cdot|\hat{s},\hat{a})\big) \leq \mathcal{L}_p\big(\|s-\hat{s}\|+\|a-\hat{a}\|\big) \\ & \left|r(s,a)-r(\hat{s},\hat{a})\right| \leq \mathcal{L}_r\big(\|s-\hat{s}\|+\|a-\hat{a}\|\big) \end{split}$$

• L_{π} -LC policies.

$$d_{\Pi}(\pi(s)-\pi(\hat{s})) \leq L_{\pi}\|s-\hat{s}\|$$

Intermediate results on LC of value functions

Lemma (Lipschitz continuity of the value function)

$$L_Q-LC \ Q-function \ Q \\ L_{\pi}-LC \ policy \ \pi$$
 $\} \Rightarrow [L_Q(1+L_{\pi})]-LC \ value \ function \ V^{\pi} \ w.r.t. \ Q$

Intermediate results on LC of value functions

Lemma (Lipschitz continuity of the value function)

$$L_Q-LC \ Q-function \ Q \\ L_{\pi}-LC \ policy \ \pi$$
 $\} \Rightarrow [L_Q(1+L_{\pi})]-LC \ value \ function \ V^{\pi} \ w.r.t. \ Q$

Lemma (Lipschitz continuity of the *n*-step *Q*-value)

$$\begin{pmatrix} (L_p, L_r) - LC \ MDP \\ L_{\pi} - LC \ policy \ \pi \end{pmatrix} \Rightarrow \begin{cases} \text{the n-step, finite horizon, } \gamma \text{-discounted} \\ \text{value function } Q_n^{\pi} \ \text{is } L_{Q_n} - LC, \text{ with:} \end{cases}$$

$$L_{Q_{n+1}}=L_r+\gamma(1+L_\pi)L_pL_{Q_n}.$$

LC of value functions

Theorem (Lipschitz-continuity of the Q-values)

$$\begin{pmatrix} L_{p}, L_{r} \end{pmatrix} - LC MDP \\ L_{\pi} - LC \text{ policy } \pi \\ \gamma L_{p} (1 + L_{\pi}) < 1 \end{pmatrix} \Rightarrow \begin{cases} \text{ the infinite horizon, } \gamma \text{-discounted} \\ \text{value function } Q^{\pi} \text{ is } L_{Q} - LC, \text{ with:} \end{cases}$$

$$L_{Q} = \frac{L_{r}}{1 - \gamma L_{p} (1 + L_{\pi})}$$

Short discussion

• Value of L_{π} .

For most common discrete policies, almost everywhere in the state space, one can prove the previous result with $L_{\pi} = 0$.

•
$$\frac{\gamma L_p (1 + L_\pi) < 1?}{\text{With } L_\pi = 0, \ \gamma L_p < 1.}$$

 \Rightarrow The environment's spatial variations (L_p)
need to be compensated by
the discount on temporal variations (γ)
to obtain smoothness guarantees on the *Q*-function

• No guarantees \Rightarrow no smoothness.

Short discussion

• Value of L_{π} .

For most common discrete policies, almost everywhere in the state space, one can prove the previous result with $L_{\pi} = 0$.

•
$$\gamma L_p(1+L_\pi) < 1?$$

With $L_{\pi} = 0$, $\gamma L_{\rho} < 1$.

 $\Rightarrow The environment's spatial variations (L_p)$ need to be compensated by $the discount on temporal variations (<math>\gamma$) to obtain smoothness guarantees on the *Q*-function.

No guarantees provide the set of the

11/20

Short discussion

• Value of L_{π} .

For most common discrete policies, almost everywhere in the state space, one can prove the previous result with $L_{\pi} = 0$.

•
$$\gamma L_p(1+L_\pi) < 1?$$

With $L_{\pi} = 0$, $\gamma L_{\rho} < 1$.

⇒ The environment's spatial variations (L_p) need to be compensated by the discount on temporal variations (γ) to obtain smoothness guarantees on the *Q*-function.

• No guarantees \neq no smoothness.

Local validity of dominating actions

Definition (Sample)

- $ig(s,\Delta^{\pi}(s),a^*(s)ig)$ with:
 - $a^*(s)$ the one step lookahead dominating action in s
 - $\Delta^{\pi}(s)$ the domination gap

Local validity of dominating actions

Definition (Sample)

- $ig(s,\Delta^{\pi}(s),a^*(s)ig)$ with:
 - a^{*}(s) the one step lookahead dominating action in s
 - $\Delta^{\pi}(s)$ the domination gap

Theorem (Influence radius of a sample)

Given a policy π , with: L_Q -LC value function Q^{π} $(s, \Delta^{\pi}(s), a^*(s))$ $\Rightarrow a^*(s) \text{ dominates in all } s' \in B(s, \rho(s))$ $\rho(s) = \frac{\Delta^{\pi}(s)}{2L_Q}.$

Exploiting influence radii

"Sampling"

Acquiring information concerning the dominating action in a given state.

Two parallel processes:

- Focus sampling on states providing high domination values (large *ρ*).
- Removing chunks of the state space where local validity is guaranteed.

LPI — The algorithm

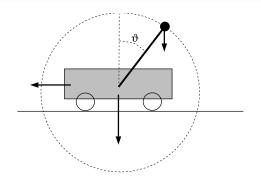
Init: threshold
$$\varepsilon_c$$
, π_0 , $n = 0$, $W = \text{DRAW}(m, d(), S)$
while $\pi_n \neq \pi_{n-1}$ do
 $n \leftarrow n+1$, $c = 1$, $\mathscr{B} = \emptyset$
while $c > \varepsilon_c$ do
 $(s, a^*(s), \Delta^{\pi_{n-1}}(s)) \leftarrow \text{GETSAMPLE}(\pi_{n-1}, W)$
 $\mathscr{B} \leftarrow \mathscr{B} \cup \{(B(s, \rho(s)), a^*(s))\}$
for all $s' \in W \cap B(s, \rho(s))$, remove s' and repopulate W
 $c = 1 - \text{VOLUME}(\mathscr{B})/\text{VOLUME}(S)$
 $\pi_n = \text{POLICY}(\pi_{n-1}, T)$

 $GetSample(\pi, W)$

loop

select state *s* in *W* with highest utility U(s)for all $a \in A$, update $Q^{\pi}(s, a), \Delta^{\pi}(s), U(s)$, statistics if there are sufficient statistics for *s*, return $(s, a^*(s), \Delta^{\pi}(s))$

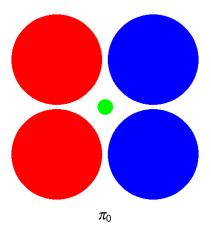
Results on the inverted pendulum



Goal: move left/right to balance the pendulum. State space: $(\theta, \dot{\theta})$

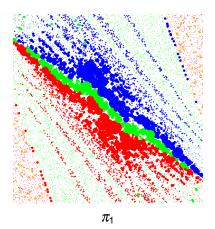
(Localized Policy Iteration)

Successive policies



(Localized Policy Iteration)

Successive policies

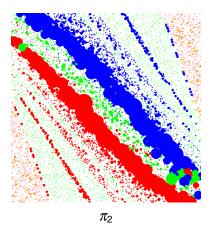


On the Locality of Action Domination in Sequential Decision Making

17/20-

(Localized Policy Iteration)

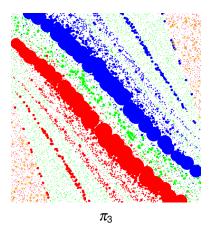
Successive policies



On the Locality of Action Domination in Sequential Decision Making

(Localized Policy Iteration)

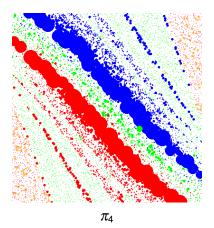
Successive policies



On the Locality of Action Domination in Sequential Decision Making

(Localized Policy Iteration)

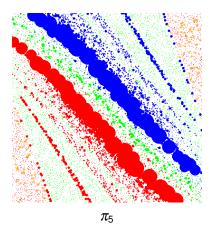
Successive policies



On the Locality of Action Domination in Sequential Decision Making

(Localized Policy Iteration)

Successive policies



On the Locality of Action Domination in Sequential Decision Making

17/20-

Remarks

- A balancing policy is found very early.
- No *a priori* discretization of the state space, nor parameterization of the value function.
- Focus on the global shape of π_n before refinement.
- Reduced computational effort.

Conclusion

• Original question: How local is the info gathered in one state about the dominating action?

19/20

Conclusion

- Original question: How local is the info gathered in one state about the dominating action?
- <u>Formalize</u> the notion of **smoothness** for the environment's underlying model:

Kantorovich distance, Lipschitz continuity \rightarrow MDP smoothness.

Other metrics? Other continuity criterion?

Other similarity measure?

19/20

Conclusion

Original question: How local is the info gathered in one state about the dominating action?

 <u>Formalize</u> the notion of <u>smoothness</u> for the environment's underlying model:

Kantorovich distance, Lipschitz continuity \rightarrow MDP smoothness.

Other metrics? Other continuity criterion?

- Other similarity measure?
- Derive properties for the policies and value functions: LC of the (optimal) value functions, influence radius of a sample.

Conclusion

Original question: How local is the info gathered in one state about the dominating action?

• <u>Formalize</u> the notion of **smoothness** for the environment's underlying model:

Kantorovich distance, Lipschitz continuity \rightarrow MDP smoothness.

Other metrics? Other continuity criterion? Other similarity measure?

- Derive properties for the **policies** and **value functions**: LC of the (optimal) value functions, influence radius of a sample.
- Exploit these properties in an algorithm for RL problems: Localized Policy Iteration combines UCB-like methods with influence radii into an active learning method.

Deeper study of incremental/asynchronous PI methods.

Thank you for your attention!