
Experience feedback about asynchonous policy iteration and
observable time MDPs

Abstract

Representing time-dependency and temporal interactions in stochastic de-
cision processes raises many questions, both from the modeling and the
resolution points of view. In this talk, I will try to provide some feedback from
my personal experience on these two topics. Several different options in the
MDP (and related) literature have been adopted to model temporal stochas-
tic decision processes. By focusing on the problems of time-dependency
and concurrency, I will explain why Generalized Semi-Markov Decision Pro-
cesses (GSMDPs) are a natural way of modeling temporal problems. In par-
ticular, we will point out an interesting link with Partially Observable MDPs
which will emphasize the complexity of their resolution. Then, from the res-
olution point of view, I will introduce a methodology based on Asynchronous
Policy Iteration and direct utility estimation designed for observable-time
GSMDPs. Based on the experience feedback of this work, we will empha-
size ideas concerning local value functions and policies and relate them to
some recent advances in machine learning.

Experience feedback
about asynchonous policy iteration

and observable time MDPs

Emmanuel Rachelson

Technical University of Crete, Chania, Greece
(formerly ONERA, Toulouse, France)

May 29th 2009

Background Time and MDPs Concurrency iATPI Conclusion

Motivation

1 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Motivation

Performing
“as well as possible”

1 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Motivation

Uncertain outcomes

1 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Motivation

Uncertain durations

1 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Motivation

Time-dependent
environment

1 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Motivation

tt1 t2

Time-dependent
goals and rewards

1 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Problem statement

We want to build a control policy
which allows the agent to coordinate its durative actions

with the continuous evolution of its uncertain environment
in order to optimize its behaviour w.r.t. a given criterion.

2 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Problem statement

We want to build a control policy
which allows the agent to coordinate its durative actions

with the continuous evolution of its uncertain environment
in order to optimize its behaviour w.r.t. a given criterion.

2 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Problem statement

We want to build a control policy
which allows the agent to coordinate its durative actions

with the continuous evolution of its uncertain environment
in order to optimize its behaviour w.r.t. a given criterion.

2 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Problem statement

We want to build a control policy
which allows the agent to coordinate its durative actions

with the continuous evolution of its uncertain environment
in order to optimize its behaviour w.r.t. a given criterion.

2 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Outline

1 Background

2 Time and MDPs

3 Concurrency, a key in temporal modeling

4 Learning from a GSMDP simulator

3 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Modeling background

Sequential decision under probabilistic uncertainty:

Markov Decision Process

Tuple 〈S,A,p, r ,T 〉
Markovian transition model p(s′|s,a)
Reward model r(s,a)
T is a set of timed decision epochs {0,1, . . . ,H}

Infinite (unbounded) horizon: H→ ∞

t0 1 n n + 1

s0

}
p(s1|s0, a0)
r(s0, a0)}

p(s1|s0, a2)
r(s0, a2)

sn p(sn+1|sn, an)
r(sn, an)

4 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Optimal policies for MDPs

Value of a sequence of actions

∀(an) ∈ AN,V (an)(s) = E

(
∞

∑
δ=0

γδ r(sδ ,aδ)

)

Stationary, deterministic, Markovian policy

D =

{
π :

{
S → A
s 7→ π(s) = a

}

Optimality equation

V ∗(s) = max
π∈D

V π(s) = max
a∈A

{
r(s,a) + γ ∑

s′∈S
p(s′|s,a)V ∗(s′)

}

5 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Continuous durations in stochastic processes

MDPs: the set T contains integer-valued dates.
→ more flexible durations?

Semi-Markov Decision Process

Tuple 〈S,A,p, f , r〉
Duration model f (τ|s,a)
Transition model p(s′|s,a) or p(s′|s,a,τ)

MDP:
t0 t1 t2 t3 . . . tδ

∆t = 1

SMDP:
t0 t1 t2 t3 . . . tδ

f(τ |s, a)

6 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Modeling time-dependency in MDPs

Many (more or less) related formalisms.

TiMDPs [Boyan and Littman, 2001]

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

Existence of an optimality equation [Rachelson et al., 2008a])

Exact and approximate methods for solving TiMDPs (and beyond)
[Feng et al., 2004, Li and Littman, 2005, Rachelson et al., 2009].

7 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Is that sufficient?

“A well-cast problem is a half-solved problem.”

Initial example: obtaining the model is not trivial.

→ the “first half” (modeling) is not solved.

A natural model for continuous-time decision processes?

8 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Is that sufficient?

“A well-cast problem is a half-solved problem.”

Initial example: obtaining the model is not trivial.

→ the “first half” (modeling) is not solved.

A natural model for continuous-time decision processes?

8 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Is that sufficient?

“A well-cast problem is a half-solved problem.”

Initial example: obtaining the model is not trivial.

→ the “first half” (modeling) is not solved.

A natural model for continuous-time decision processes?

8 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Concurrent exogeneous events

Explicit-event modeling:
a natural description of the systems complexity.

9 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Concurrent exogeneous events

Explicit-event modeling:
a natural description of the systems complexity.

Aggregating the contribution of concurrent temporal processes. . .

. . .
internal
sunlight
weather
other agent
my action

9 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Concurrent exogeneous events

Explicit-event modeling:
a natural description of the systems complexity.

Aggregating the contribution of concurrent temporal processes. . .

. . .
internal
sunlight
weather
other agent
my action

S

. . . all affecting the same state space

9 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

GSMDPs

Generalized Semi-Markov Decision Process

Tuple 〈S,E ,A,p, f , r〉
E Set of events.

A⊂ E Subset of controlable events (actions).

f (ce|s,e) Duration model of event e.

p(s′|s,e,ce) Transition model of event e.

Glynn, P. (1989).
A GSMP Formalism for Discrete Event Systems.
Proc. of the IEEE, 77.

Younes, H. L. S. and Simmons, R. G. (2004).
Solving Generalized Semi-Markov Decision Processes using Continuous Phase-Type
Distributions.
In AAAI Conference on Artificial Intelligence.

10 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

GSMDPs

Generalized Semi-Markov Decision Process

Tuple 〈S,E ,A,p, f , r〉
E Set of events.

A⊂ E Subset of controlable events (actions).

f (ce|s,e) Duration model of event e.

p(s′|s,e,ce) Transition model of event e.

s1

10 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

GSMDPs

Generalized Semi-Markov Decision Process

Tuple 〈S,E ,A,p, f , r〉
E Set of events.

A⊂ E Subset of controlable events (actions).

f (ce|s,e) Duration model of event e.

p(s′|s,e,ce) Transition model of event e.

s1

Es1 : e2

e4

e5

a

10 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

GSMDPs

Generalized Semi-Markov Decision Process

Tuple 〈S,E ,A,p, f , r〉
E Set of events.

A⊂ E Subset of controlable events (actions).

f (ce|s,e) Duration model of event e.

p(s′|s,e,ce) Transition model of event e.

s1

Es1 : e2

e4

e5

a

10 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

GSMDPs

Generalized Semi-Markov Decision Process

Tuple 〈S,E ,A,p, f , r〉
E Set of events.

A⊂ E Subset of controlable events (actions).

f (ce|s,e) Duration model of event e.

p(s′|s,e,ce) Transition model of event e.

s1

Es1 : e2

e4

e5

a

s2

P (s′|s1, e4)

10 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

GSMDPs

Generalized Semi-Markov Decision Process

Tuple 〈S,E ,A,p, f , r〉
E Set of events.

A⊂ E Subset of controlable events (actions).

f (ce|s,e) Duration model of event e.

p(s′|s,e,ce) Transition model of event e.

s1

Es1 : e2

e4

e5

a

s2

P (s′|s1, e4)

Es2 : e2

e3

a

10 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

GSMDPs

Generalized Semi-Markov Decision Process

Tuple 〈S,E ,A,p, f , r〉
E Set of events.

A⊂ E Subset of controlable events (actions).

f (ce|s,e) Duration model of event e.

p(s′|s,e,ce) Transition model of event e.

s1

Es1 : e2

e4

e5

a

s2

P (s′|s1, e4)

Es2 : e2

e3

a

P (s′|s2, a)

10 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Modeling claim

A natural model for temporal processes

Observable time GSMDPs are a natural way of modeling stochastic,
temporal decision processes.

11 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Properties

Markov property

The process defined by the natural state s of a GSMDP does not
retain Markov’s property.

No guarantee of an optimal π(s) policy.

Markovian state: (s,c)
→ often non-observable.

12 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Properties

Working hypothesis

In time-dependent GSMDPs, the state (s, t) is a good approximation
of the Markovian state variables (s,c).

12 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

GSMDPs and POMDPs

Observations and hidden process

The natural state s of a GSMDP corresponds to observations on a
hidden Markov process (s,c).

{
(s,c) ↔ hidden state

s ↔ observations

Working hypothesis

In time-dependent GSMDPs, the state (s, t) is a good approximation
of the associated POMDP’s belief state.

13 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

From temporal modeling to temporal resolution

Large, hybrid, metric state spaces.

Many concurrent events.

Long, time-bounded episodes.

Example: subway problem.

14 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

From temporal modeling to temporal resolution

Remark
Even though GSMDPs are non-Markov processes, they provide a
straightforward way of building a simulator.

How can we search for a good policy?
→ Learning from the interaction with a GSMDP simulator.

14 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Learning from interaction with a simulator

Agent

Simulator

a s′, t′, r

Planning: using model

{
P(s′, t ′|s, t,a)
r(s, t,a) ↘

to get good

{
V (s, t)
π(s, t)

Learning: using samples (s, t,a, r ,s′, t ′)
↗

15 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Simulation-based Reinforcement Learning

3 main issues:

Exploration of the state space

Update of the value function

Improvement of the policy

How should we use our temporal process’ simulator to learn policies?

16 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Simulation-based Reinforcement Learning

3 main issues:

Exploration of the state space

Update of the value function

Improvement of the policy

How should we use our temporal process’ simulator to learn policies?

17 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Intuition

Our (lazy) approach

Improve the policy in the situations which are likely to be encountered.
Evaluate the policy in the situations needed for improvement.

Exploiting info from
episodes?

episode = observed
simulated trajectory through

the state space.

t

ss0

b

b

b
b

b
b

b

b
b

b

b

b

b
b

b
b

b
b

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc
bc

bc

bc

bc
bc
bc

bc

bc
bc

ut

ut

ut

ut

ut
ut

ut

ut
ut

ut

ut

ut

ut
ut

ut

ut

ut

ut
ut
ut

18 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Model-free, simulation-based local search

Input initial state s0, t0,
initial policy π0,
process simulator.

Goal improve on π0

“simulator” →

“local” →
“incremental π improvement” →

simulation-based

asynchronous
policy iteration

for temporal problems:

iATPI

19 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Model-free, simulation-based local search

Input initial state s0, t0,
initial policy π0,
process simulator.

Goal improve on π0

“simulator” →
“local” →

“incremental π improvement” →

simulation-based
asynchronous

policy iteration

for temporal problems:

iATPI

19 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Model-free, simulation-based local search

Input initial state s0, t0,
initial policy π0,
process simulator.

Goal improve on π0

“simulator” →
“local” →

“incremental π improvement” →

simulation-based
asynchronous
policy iteration

for temporal problems:

iATPI

19 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Model-free, simulation-based local search

Input initial state s0, t0,
initial policy π0,
process simulator.

Goal improve on π0

“simulator” →
“local” →

“incremental π improvement” →

simulation-based
asynchronous
policy iteration

for temporal problems:

iATPI

19 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Model-free, simulation-based local search

Input initial state s0, t0,
initial policy π0,
process simulator.

Goal improve on π0

“simulator” →
“local” →

“incremental π improvement” →

simulation-based
asynchronous
policy iteration

for temporal problems:

iATPI

19 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Asynchronous Dynamic Programming

Asynchronous Bellman backups

As long as every state is visited infinitely often for Bellman backups on
V or π , the sequences of Vn and πn converge to V ∗ and π∗.
→ Asynchronous Policy Iteration.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996).
Neuro-Dynamic Programming.
Athena Scientific.

iATPI performs greedy exploration

Once an improving action a is found in (s, t), the next state (s′, t ′)
picked for Bellman backup is chosen by applying a.
Observable time⇒ this (s′, t ′) is picked according to P(s′, t ′|s, t,πn).

20 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Monte Carlo evaluations for temporal problems

Simulating π in (s, t)
⇓((s0, t0),a0, r0, . . . ,(sl−1, tt−1),al−1, rl−1,(sl , tl)

)∣∣∣∣∣∣
(s0, t0) = (s, t)
ai = π(si , ti)
tl ≥ T


t

ss0

b

b

b
b

b
b

b

b
b

b

b

b

b
b

b
b

b
b

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc
bc

bc

bc

bc
bc
bc

bc

bc
bc

ut

ut

ut

ut

ut
ut

ut

ut
ut

ut

ut

ut

ut
ut

ut

ut

ut

ut
ut
ut

21 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Monte Carlo evaluations for temporal problems

Simulating π in (s, t)
⇓((s0, t0),a0, r0, . . . ,(sl−1, tt−1),al−1, rl−1,(sl , tl)

)∣∣∣∣∣∣
(s0, t0) = (s, t)
ai = π(si , ti)
tl ≥ T


⇓

ValueSet =

{
R̃(si , ti) =

l−1
∑

k=i
ri

}

21 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Monte Carlo evaluations for temporal problems

Simulating π in (s, t)
⇓((s0, t0),a0, r0, . . . ,(sl−1, tt−1),al−1, rl−1,(sl , tl)

)∣∣∣∣∣∣
(s0, t0) = (s, t)
ai = π(si , ti)
tl ≥ T


⇓

ValueSet =

{
R̃(si , ti) =

l−1
∑

k=i
ri

}

Value function estimation

V π(s, t) = E(R(s, t))
Ṽ π ← regression(ValueSet)

21 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

In practice

Algorithm sketch

Given the current policy πn,
the current process state (s, t),
the current estimate Ṽ πn

Compute the best action a∗ with respect to Ṽ πn

Pick (s′, t ′) according to a∗

Until t ′ > T

Compute Ṽ πn+1 for the last(s) episode(s)

But . . .

22 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Avoiding the pitfall of partial exploration

The R̃(s, t) are not drawn i.i.d. (only independently).
→ Ṽ π is a biased estimator.

Ṽ π is only valid locally→ local confidence in Ṽ π

t

ss0

b

b

b
b

b
b

b

b
b

b

b

b

b
b

b
b

b
b

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc
bc

bc

bc

bc
bc
bc

bc

bc
bc

ut

ut

ut

ut

ut
ut

ut

ut
ut

ut

ut

ut

ut
ut

ut

ut

ut

ut
ut
ut

P (s′, t′|s0, t0, a1)

Q(s0, a1) =?

23 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Avoiding the pitfall of partial exploration

The R̃(s, t) are not drawn i.i.d. (only independently).
→ Ṽ π is a biased estimator.

Ṽ π is only valid locally→ local confidence in Ṽ π

Confidence function CV

Can we trust Ṽ π(s, t) as an approximation of V π in (s, t)?

CV :

{
S×R → {>,⊥}

s, t 7→ CV (s, t)

Ṽ π(s, t)→ CV (s, t)
π(s, t)→ Cπ(s, t)

23 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

iATPI

iATPI

iATPI:


Asynchronous policy iteration for greedy search
Time-dependency & Monte-Carlo sampling
Local policies and values via confidence functions

Asynchronous PI: local improvements / partial evaluation.

t-dependent Monte-Carlo sampling: loopless — finite — total criterion.

Confidence functions: alternative to heuristic-based approaches.

24 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

iATPI

Given the current policy πn,
the current process state (s, t),
the current estimate Ṽ πn

Compute the best action a∗ with respect to Ṽ πn

Use CṼ πn to check if Ṽ πn can be used
Sample more evaluation trajectories for πn if not
Refine Ṽ πn and CṼ πn

Pick (s′, t ′) according to a∗

Until t ′ > T

Compute Ṽ πn+1 ,CṼ πn+1 ,πn+1,Cπn+1 for the last(s) episode(s)

25 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Output

A pile Πn = {(π0,Cπ0),(π1,Cπ1), . . . ,(πn,Cπn)|Cπ0(s, t) =>} of
partial policies.

25 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Preliminary results with iATPI

Preliminary results on ATPI and the subway problem:

Subway problem

4 trains, 6 stations
→ 22 hybrid state variables, 9 actions

episodes of 12 hours with around 2000 steps.

26 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Preliminary results with iATPI

Preliminary results on ATPI and the subway problem:

With proper initialization, naive ATPI finds good policies.

[Rachelson et al., 2008b, Rachelson et al., 2008c]

26 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Preliminary results with iATPI

Preliminary results on ATPI and the subway problem:

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 0 2 4 6 8 10 12 14

in
iti

al
 s

ta
te

 v
al

ue

iteration number

M-C
SVR

26 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Value functions, policies and confidence
functions

How do we write Ṽ , CV , π and Cπ?

→ Statistical learning problem

We implemented and tried several options:

Ṽ incremental, local regression problem.

SVR, LWPR, Nearest-neighbours.

π local classification problem.

SVC, Nearest-neighbours.

C incremental, local statistical sufficiency test.

OC-SVM, central-limit theorem.

27 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Value functions, policies and confidence
functions

Since they are local and able to answer “I don’t know”,
the value functions and policies of iATPI

can be considered as KWIK learners.

Li, L., Littman, M. L., and Walsh, T. J. (2008).
Knows What It Knows: A Framework for Self-Aware Learning.
In International Conference on Machine Learning.

Learning rate and convergence guarantees?

27 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Perspectives for iATPI

iATPI is ongoing work
→ no hasty conclusions

Needed work: extensive testing of the algorithm’s full version.

Still lots of open questions:

How to avoid local maxima in value function space?

Test on a fully discrete and observable problem?

. . . and many ideas for improvement:

Use Vn−k functions as lower bounds on Vn

Utility functions for stopping sampling in episode.bestAction()

28 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Contributions and experience feedback

Modeling framework for stochastic decision processes: GSMDPs +
continuous time.

iATPI

Modeling claim

Describing concurrent, exogenous contributions to the system’s
dynamics separately.

Concurrent observable-time SMDPs affecting the same state space
→ observable-time GSMDPs.

Natural framework for describing temporal problems.

Integration in the VLE platform for DEVS multi-model simulation.
29 / 30

Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Contributions and experience feedback

Modeling framework for stochastic decision processes: GSMDPs +
continuous time.

iATPI

iATPI

iATPI:


Asynchronous policy iteration
Time-dependency & Monte-Carlo sampling
Confidence functions

Asynchronous PI: local improvements / partial evaluation.

t-dependent Monte-Carlo sampling: loopless — finite — total criterion.

Confidence functions: alternative to heuristic-based approaches.

29 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Background Time and MDPs Concurrency iATPI Conclusion

Thank you for your attention!

30 / 30
Experience feedback about asynchonous policy iteration and observable time MDPs

Boyan, J. A. and Littman, M. L. (2001).
Exact Solutions to Time Dependent MDPs.
Advances in Neural Information Processing Systems, 13:1026–1032.

Rachelson, E., Garcia, F., and Fabiani, P. (2008a).
Extending the Bellman Equation for MDP to Continuous Actions and Continuous Time in
the Discounted Case.
In International Symposium on Artificial Intelligence and Mathematics.

Feng, Z., Dearden, R., Meuleau, N., and Washington, R.
Dynamic Programming for Structured Continuous Markov Decision Problems (2004).
In Conference on Uncertainty in Artificial Intelligence.

Li, L., and Littman, M. L.
Lazy Approximation for Solving Continuous Finite-Horizon MDPs (2005).
In National Conference on Artificial Intelligence.

Rachelson, E., Garcia, F., and Fabiani, P. (2009).
TiMDPpoly : an Improved Method for Solving Time-dependent MDPs.
Submitted to International Conference on Automated Planning and Scheduling.

Glynn, P. (1989).
A GSMP Formalism for Discrete Event Systems.
Proc. of the IEEE, 77.

0 / 0
Experience feedback about asynchonous policy iteration and observable time MDPs

Younes, H. L. S. and Simmons, R. G. (2004).
Solving Generalized Semi-Markov Decision Processes using Continuous Phase-Type
Distributions.
In AAAI Conference on Artificial Intelligence.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996).
Neuro-Dynamic Programming.
Athena Scientific.

Rachelson, E., Quesnel, G., Garcia, F., and Fabiani, P. (2008b).
A Simulation-based Approach for Solving Generalized Semi-Markov Decision Processes.
In European Conference on Artificial Intelligence.

Rachelson, E., Quesnel, G., Garcia, F., and Fabiani, P. (2008c).
Approximate Policy Iteration for Generalized Semi-Markov Decision Processes: an
Improved Algorithm.
In European Workshop on Reinforcement Learning.

Li, L., Littman, M. L., and Walsh, T. J. (2008).
Knows What It Knows: A Framework for Self-Aware Learning.
In International Conference on Machine Learning.

Quesnel, G., Duboz, R., Ramat, E., and Traore, M. K. (2007).
VLE - A Multi-Modeling and Simulation Environment.
In Summer Simulation Conf., pages 367–374.

0 / 0
Experience feedback about asynchonous policy iteration and observable time MDPs

	Background
	Time and MDPs
	Concurrency, a key in temporal modeling
	Learning from a GSMDP simulator
	Conclusion
	Appendix

