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Examples

Planning under uncertainty with time dependency.
→ planning to coordinate with an uncertain and unstationnary

environment.
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Examples

Planning under uncertainty with time dependency.
→ planning to coordinate with an uncertain and unstationnary

environment.

Should we open more lines ?
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Examples

Planning under uncertainty with time dependency.
→ planning to coordinate with an uncertain and unstationnary

environment.

Airplanes taxiing management
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Examples

Planning under uncertainty with time dependency.
→ planning to coordinate with an uncertain and unstationnary

environment.

Onboard planning for coordination
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Examples

Planning under uncertainty with time dependency.
→ planning to coordinate with an uncertain and unstationnary

environment.

Adding or removing trains ?
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Problem features

Main idea

Why is writing an MDP for the previous problems such a difficult task ?

“Lots of things occur in parallel”

concurrent phenomena

partially controlable dynamics
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Problem features

Typical features

Continuous time

Hybrid state spaces

Large state spaces

Total reward criteria

Long trajectories / long episodes
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Problem features

How do we model all this ?
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GSMDP

GSMDP, ( Younes et al., 04)
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GSMDP

GSMDP, ( Younes et al., 04)

GSMP, ( Glynn, 89)
Several semi-Markov

processes affecting the
same state space

One process
conditionned by the
choice of the action

undertaken

→ 〈S,E ,A,P,F , r〉
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GSMDP

GSMDP, ( Younes et al., 04)

GSMP, ( Glynn, 89)
Several semi-Markov

processes affecting the
same state space

One process
conditionned by the
choice of the action

undertaken

→ 〈S,E ,A,P,F , r〉
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GSMDP

Controling GSMDP

non-Markov behaviour !

→ no guarantee of an optimal Markov policy

( Younes et al., 04): approximate your model with phase-type
(exponential) distributions.

Supplementary variables technique ( Nilsen, 98).
Large dimension state spaces.

Our approach: no hypothesis, simulation-based API.
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Policy Iteration algorithms

Policy Iteration

Policy evaluation: V πn

One-step improvement: πn+1
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Policy Iteration algorithms

Policy Iteration

performs search in policy space

converges in less iterations than VI

takes longer than VI
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Policy Iteration algorithms

Policy Iteration

Approximate evaluation: V πn

One-step improvement: πn+1
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Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

Bellman backups can be performed in any order, the algorithm
eventually reaches the optimal policy.

Example

Asynchronous Value Iteration
Vn+1(s)←max

a∈A
r(s,a)+ γ ∑

s′∈S
P(s′|s,a)Vn(s′)

Some states can be updated several times before some others are
updated for the first time.
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Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

Bellman backups can be performed in any order, the algorithm
eventually reaches the optimal policy.

Example

Asynchronous Policy Iteration
πn+1(s)← argmax

a∈A
r(s,a)+ γ ∑

s′∈S
P(s′|s,a)V πn(s′)

We can choose to update only some states before entering a new
evaluation of π step.
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Real-Time Policy Iteration

( Barto et al., 95) Learning to act using real-time dynamic
programming.

RTDP

Asynchronous VI with heuristic guidance.
Updated states at step n + 1 = states visited by the one-step
lookahead greedy policy w.r.t Vn.

Is there an equivalent for policy iteration ?
We introduce:

RTPI

At iteration n + 1, updated states are states visited by the one-step
lookahead greedy policy w.r.t V πn . ie. states visited by the application
of πn+1.
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Real-Time Policy Iteration

Practical motivation for RTPI

Motivation: don’t want / can’t improve the policy everywhere

too time/resource consuming

not useful with regard to ’relevant’ information gathered

Useful ? Interesting ? Relevant ?
→ “Improving the policy in the situations I am likely to encounter

today”

In other words . . .
Which subset of states for Asynchronous PI ?

The ones visited by policy simulation.
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RL, Monte-Carlo sampling and Statistical Learning

Simulation-based policy evaluation

Our hypothesis: we have a generative model of the process.
→ (Monte-Carlo) simulation-based policy evaluation.

Statistical learning

Simulating the policy
⇔ Drawing a set of trajectories

⇔ Finite set of realisations of r.v. Rπ(s)

We need to

abstract (generalize) local information from samples

compactly store previous knowledge of V π(s) = E(Rπ(s)).
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RL, Monte-Carlo sampling and Statistical Learning

Regression for RL

Reminder:

Approximate evaluation: V πn

One-step improvement: πn+1

(nearest neighbours, SVR, kLASSO, LWPR)

Emmanuel Rachelson Patrick Fabiani Frédérick Garcia

Simulation-based Approximate Policy Iteration for Generalized Semi-Markov Decision Processes



Time and MDP: motivation and modeling Focusing Policy search in Policy Iteration Dealing with large dimension, continuous state spaces

The ATPI algorithm (naive version)

ATPI
RTPI algorithm on continuous variables with simulation-based policy

evaluation + regression.

main:
Input : π0 or Ṽ0, s0

loop
TrainingSet ← /0
for i = 1 to Nsim do
{(s,v)} ← simulate(Ṽ ,s0)
TrainingSet ← TrainingSet ∪{(s,v)}

end for
Ṽ ← TrainApproximator(TrainingSet)

end loop
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The ATPI algorithm (naive version)

ATPI
RTPI algorithm on continuous variables with simulation-based policy

evaluation + regression.

simulate(Ṽ ,s0):
ExecutionPath← /0
s← s0

while horizon not reached do
action← ComputePolicy(s, Ṽ )
(s′, r)← GSMDPstep(s,action)
ExecutionPath← ExecutionPath∪ (s′, r)

end while
convert execution path to {(s,v)}
return {(s,v)}
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The ATPI algorithm (naive version)

ATPI
RTPI algorithm on continuous variables with simulation-based policy

evaluation + regression.

ComputePolicy(s, Ṽ ):
for a ∈ A do

Q̃(s,a) = 0
for j = 1 to Nsamples do

(s′, r)← GSMDPstep(s,a)
Q̃(s,a)← Q̃(s,a)+ r + γ t ′−t Ṽ(s′)

end for
Q̃(s,a)← 1

Nsamples
Q̃(s,a)

end for
action← argmax

a∈A
Q̃(s,a)

return action
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The ATPI algorithm (naive version)

Subway problem results

Initial version of online-ATPI with SVR.
Initial policy sets trains to run all day long.
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The ATPI algorithm (naive version)

Is there anybody out there ?
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The ATPI algorithm (naive version)

Is there anybody out there ?
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The ATPI algorithm (naive version)

Is there anybody out there ?
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Should I trust my regression ?
→ what if it overestimates

the true V π(s) ?

Emmanuel Rachelson Patrick Fabiani Frédérick Garcia

Simulation-based Approximate Policy Iteration for Generalized Semi-Markov Decision Processes



Time and MDP: motivation and modeling Focusing Policy search in Policy Iteration Dealing with large dimension, continuous state spaces

The ATPI algorithm (naive version)

Is there anybody out there ?
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Define a notion of confidence
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The ATPI algorithm (complete version)

Introducing confidence

“confidence”⇔ having enough points around s
⇔ approaching the sufficient statistics for V π(s)
→ approx. measure: pdf of the underlying process.

What should we do if we are not confident ?
→ generate data – increase the samples’ density – simulate

Storing the policy ?

Same problem for policy storage than for value function:
( Lagoudakis et al., 03) RL as Classification.

Full statistical learning problem:
(local incremental) regression (V π ), classification (π),

density estimation (conf )
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The ATPI algorithm (complete version)

ATPI - complete version

ATPI
samples ← /0
for i = 1 to Nsim do

while t < horizon do
estimate Q-values
s′← apply best action
store (s,a, r ,s′) in samples

end while
end for
trainṼ π(samples)
trainπ̃(samples)

Emmanuel Rachelson Patrick Fabiani Frédérick Garcia

Simulation-based Approximate Policy Iteration for Generalized Semi-Markov Decision Processes



Time and MDP: motivation and modeling Focusing Policy search in Policy Iteration Dealing with large dimension, continuous state spaces

The ATPI algorithm (complete version)

ATPI - complete version

estimate Q(s,a)

Q̃(s,a)← 0
for i = 1 to Na do

(r ,s′)← pick next state
if confidence(s′) = true then

Q̃(s,a)← Q̃(s,a)+ r+Ṽ π(s′)
Na

else
data = simulate(π,s′)
retrainṼ π (data)

Q̃(s,a)← Q̃(s,a)+ r+Ṽ π(s′)
Na

end if
end for
return Q̃(s,a)
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Conclusion

GSMDP Modeling of large scale temporal problems of decision under
uncertainty.

RTPI Introduction of a new asynchronous PI method performing partial
and incremental state space exploration guided by simulation /
local policy improvement.

ATPI Design of a RTPI algorithm for continuous, high dimensional state
spaces, exploiting the properties of the time variable and bringing
together results from:

discrete events simulation
simulation-based policy evaluation
approximate asynchronous policy iteration
statistical learning

GiSMoP C++ library
→ http://emmanuel.rachelson.free.fr/fr/gismop.html
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Future work

RTPI Independent algorithm
study convergence
compare with RTDP

ATPI Algorithm improvement and testing
Even non-parametric methods need some tuning ! (currently:
LWPR / MC-SVM / OC-SVM)
error bounds for API
other benchmarks
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Thank you for your attention !
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